Gravitational wave detection with Virgo and LIGO experiment - Case of the long bursts

Samuel Franco Supervisor: Patrice Hello

Laboratoire de l'Accélérateur Linéaire (Orsay)

06/12/2013

Outline

- A word about gravitational waves
- The Virgo and LIGO experiments
- Data analysis: detection of long transients (a.k.a. my thesis)

You said gravitational?

Gravitational waves are perturbations of the space-time metric.

Credit: K. THORNE (Caltech), T. CARNAHAN (NASA GSFC)

- Their advantage: they interact very weakly with the rest of the Universe. They can therefore be a precious vector of information about their emitters.
- Their disadvantage: they interact very weakly with the rest of the Universe.

What are you looking for?

• The power emitted by a gravitational wave source is given by:

$$P_{GW} \sim rac{c^5}{G} \left(rac{R_s}{R}
ight)^2 \left(rac{v}{c}
ight)^6 \epsilon^2$$

where R is the radius of the object, R_s its Schwarzschild radius, v its velocity, ϵ a parameter characterizing its asymmetry.

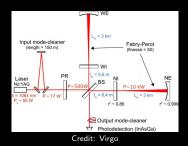
- An efficient emission implies a compact, relativistic and asymmetric progenitor.
- Impossible to create a gravitational wave emittor in a laboratory: for $\varepsilon=1, R=1$ $m, M=10^3$ kg, v=300 $m.s^{-1}$ the resultant wave should have a luminosity of about $10^{-14}W...$
- Just compare to a $10~M_{\odot}$ black hole collision: $10^{50}~{
 m W!}$

Gravitational zoology

We can split up the gravitational waves sources into three main categories:

- **Stochastic background:** incoherent sum of waves in the close-by universe, primordial gravitational waves.
- Continuous sources: pulsars which emit gravitational waves continuously.
- Transient sources: excited compact objects. For instance:
 - Merging of a compact binary system
 - A proto-neutron star, directly after its formation during a supernovæ.
 - A black hole when formed or when perturbed by an infalling object.
 - Instabilities in accretion disks, cosmic strings...
- All of them are rare objects/events. We need a detector which "sees" far *i.e.* a very sensitive detector.

The Virgo Experiment, part I


Located in Cascina, near Pisa, Italy.

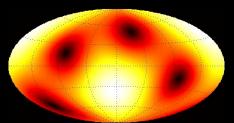
Credit: Virgo

• It is basically a Michelson interferometer with arms 3 km long.

The Virgo Experiment, part II

- When a wave goes through the interferometer, the space-time metric changes (differently) in each arm. Thus the optical path of the photons in each arm is different. This implies:
 - A phase shift of the laser, hence a shift of the interference pattern.
 - So a change in the detected power.
- The light intensity's change at the level of the dark fringe is proportional to the amplitude of the wave which induced it!

How does it actually look like?



How sensitive?

$$\frac{\delta L}{L} = 10^{-21}$$

But how do you do astronomy?

- With one experiment: impossible. Each experiment has an antenna factor. For a source located in the direction of the arms' bisectors, the phase shift is null, this direction is blind.
- So you need at least 3 different interferometers to be able to triangulate your signal.

Virgo antenna function at a given date in galactic coordinates

The LIGO-Virgo network

From left to right: LIGO Livingston (Louisiana), LIGO Hanford (Washington) and Virgo

Long transients

- Signals of duration from a few seconds to a few weeks.
- Standard transient analysis focus on very short (<1s) signals.
- Astrophysical sources of long transients:
 - Eccentric black hole binaries
 - Accretion disk instabilities (ADI)
 - Neutron stars r-modes
 - and more...

The STAMP pipeline

- STAMP computes the auto and cross-correlation of the data from a couple of interferometers, and then generates frequency-time maps
- The most significant pixels are then clusterized generating the triggers.

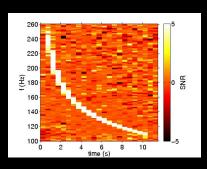


Figure: ft-map containing an injected Accretion Disk Instability waveform in Gaussian noise.

All-sky pipeline

- The purpose of the STAMP All-Sky (or STAMP-AS) pipeline is to adapt STAMP in order to cover the case of an unknown source position.
- The all-sky analysis, for a given pair of detectors, is structured as follows:
 - A grid of sky positions to scan is chosen
 - On each of these positions, we perform a STAMP search, which gives triggers.

Background estimation

- As in other fields, make a detection is to catch a signal significantly louder than the background noise, which is not due to an abnormal instrument behavior or to the direct environment (glitches).
- The more data, the more efficiency background can be estimated.
- \bullet To get an acceptable false-alarm rate (FAR), of the order of 10^{-9} Hz. (about three false alarms in a hundred years), we cannot wait until enough science data is produced, and we cannot simulate them either (because of the glitches).

- With a physical signal, you should have power left almost simultaneously in each experiment.
- To estimate the background *i.e.* accidental coincidences between power in the two experiments, we introduce a time shift between the two data strains before the correlation.
- All physical coincidences are removed, we have only accidental coincidences.

First results: Efficiency studies

- Results for a false alarm rate of 10^{-6} Hz (rate estimated over a week of S5 data, shifted a 100 times).
- Pipeline begins to be sensitive to our signals for sources distant from 5 to 20 Mpc, depending on the waveform we use

(reminder: 1 pc = 3.26light-years)

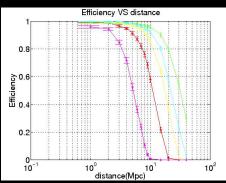


Figure: Efficiency curves for different ADI waveforms.

What's next?

- Pursue the study over an entire science run (about 1 year of data). Beginning this week! Results in March.
- Look at the non-shifted data. If we have a candidate: a lot of work to do to understand it.
- If we don't, we can set upper limits: knowing the state of our detector, we can say that the event rate of the sources we are studying cannot be higher than a certain threshold, otherwise we would have seen something.
- Even with a non detection, there is good physics to be done!

Summary

- Gravitational waves are a new astronomical messenger. They are emitted by dense, relativistic and asymmetric objects (neutron stars, black holes..)
- Virgo is a Michelson interferometer designed to detect gravitational waves.
- STAMPAS is a new analysis pipeline dedicated to the search of signals never studied so far. Results coming soon!

On the paper

 In General Relativity, space-time structure is defined by a quantity named metric tensor, defined as:

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

where ds is the infinitesimal length element, dx the infinitesimal changes in coordinates vector and g the metric tensor.

• In a "flat" space, this metric tensor is:

$$g_{\mu
u}=\eta_{\mu
u}=\left(egin{array}{cccc} -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight)$$

On the paper (II)

 A GW can be described, at first order, as a first order perturbation of the metric tensor:

$$g_{\mu
u} = \eta_{\mu
u} + \left(egin{array}{cccc} 0 & 0 & 0 & 0 \ 0 & h_+(t) & h_ imes(t) & 0 \ 0 & h_ imes(t) & -h_+(t) & 0 \ 0 & 0 & 0 & 0 \end{array}
ight)$$

• The amplitude of the GW is defined as $h(t) = \sqrt{h_+(t)^2 + h_\times(t)^2}$

But are these things real?

- The Hulse-Taylor (PSR 1913+016) binary pulsar is the most famous evidence of their existence: this binary system has been observed for more than 30 years, and its orbital period is slowly decreasing with time.
- The GR predicts that the two pulsars are getting closer because the system loses energy due to the emission of gravitational waves.
- This prediction agrees remarkably well with the data (it is not a fit, it is a predicition!).

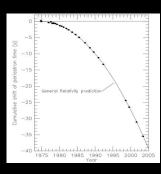
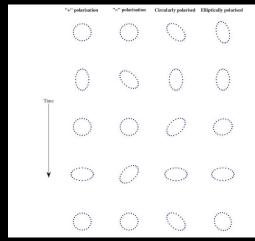



Figure: Decrease of the orbital period of the Hulse-Taylor binay pulsar, from arXiv:astro-ph/0407149

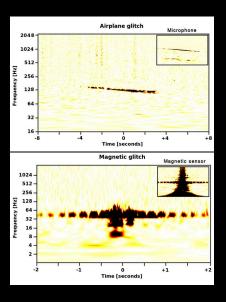
Effect of gravitational waves

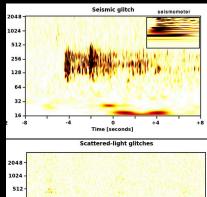
- Consider a wave propagating in the direction orthogonal to the screen.
- The scheme presents the effect of a gravitational wave on a ring of test masses, according to its polarization (+, ×, circular or elliptical).

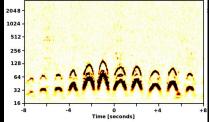
Credit: J. CLARK (University of Glasgow)

Beauty of the design

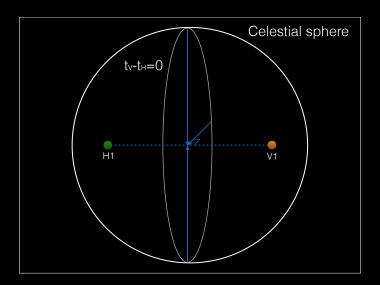
- Each mirror of the experiment is suspended to a series of pendula to reduce the seismic noise above 10 Hz, to a level compatible with our designed sensitivity.
- Each arm is a Fabry-Perot cavity, which traps the light of the laser, making it travel a longer distance into the arms, which increases our sensitivity. It is equivalent to build a simple Michelson with 100 km long arms.
- Our design sensitivity: we are able to detect relative distance changes of about 10⁻²¹!


Data characterization


- An experiment like Virgo is extremely sensitive to noise, due to the fact that the signal we are looking for is very weak. Typically we look for a relative distnace change of 10^{-21} .
- To be able to raise our chances to actually make a detection, it is extremely important to know the noise in our detector, to understand it source, to be able to cancel it as quickly as possible. This is called noise hunting.


Noise Hunting

- An event or a family of events with similar properties are detected in the physical channel
- A check is done to correlate this event to either unusual detector behavior or human activities.
- If it is not the case, we look for correlations between the physical channel and one or several auxiliary channels. This helps identifying the origin of the noise.
- When the noise is understood, we try to either remove its source or lower its coupling with the physical channel.


Example of time-frequency maps

About phase degeneracy

The signals we are interested in

- Eccentric black hole binaries: signals emitted by a couple of black holes with eccentric orbits.
- Essentially accretion disk instabilities: generated by matter falling onto a dense body, forming a ring around it, in which instabilities occur.

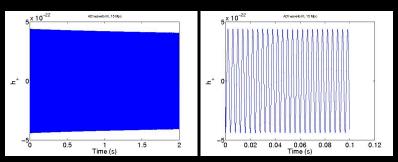


Figure: Accretion disk instability waveform

Example of skymap

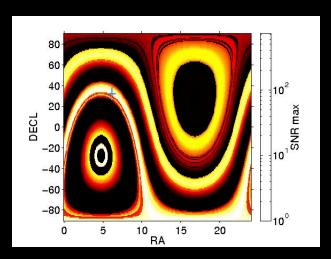
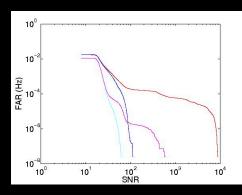



Figure: Skymap obtained with Hanford and Livingston detectors, with a strong injection at $\alpha = 6h$, $\delta = 30$ deg.

First results: Background studies

False alarm rate estimate over one week of data from Hanford and Livingston experiments.

- Red: Raw data
- Magenta: Triggers with frequencies above 200Hz
- Blue: Triggers with loudest identified glitches removed
- Cyan: (2) and (3) combined

Advanced Detector Era

- So far no detection has been made. Which was expected.
- On-going technical upgrades of both Virgo and LIGO will make them 10 times more sensitive:
 - New mirrors
 - New suspension cables
 - New lasers ...
- The Advanced LIGO and Virgo detectors should be operational in respectively 2015 and 2016.
- Seeing 10 times further means we observe a volume 1000 times wider. and expect a detection rate between 1 event per year and a few events per month.