Higgs boson decay in γZ in the NMSSM

Outline

- Introduction
 - Higgs boson discovery
 - Standard Model
 - MSSM,NMSSM
- Higgs boson decay in γZ
 - Effect of charginos
 - Effect of sfermions

Higgs boson discovery

- 4th July 2012 : Announcement of the discovery of a new particle at LHC
- A scalar boson with a mass of 125 GeV, predominantly CP-even
- 8th October 2013 : Nobel Price for Peter Higgs and François Englert

but... which Higgs boson?

Standard Model

boson de Higgs

Standard Model

- Higgs boson : last piece of this theory
- Experimentally very well verified
- But do not explain everything :
 - Hierarchy problem
 - Neutrino Masses
 - Quadratic divergence of radiatives corrections to Higgs boson mass
 - Dark matter

Standard Model : quadratic divergence of m_H^2

• Yukawa potential : $-\lambda_f H \overline{f} f$

$$\Delta m_H^2 = \frac{-|\lambda_f|^2}{8\pi^2} \Lambda_{UV}^2 + \dots$$

• But $m_H = 125 \text{GeV}...$

Idea

• New scalar particle with the following interaction Lagrangian : $-\lambda_s |H|^2 |S|^2$

Idea

• New symmetry relating bosons and fermions and implying $\lambda_s = |\lambda_f|^2$

Supersymmetry !

- Fermionic degrees of freedom = bosonic degrees of freedom
- Particles and superpartners are degenerate

SUSY has to be broken !

MSSM

• New zoo of particles :

2 Higgs bosons here !

MSSM

• Neutralinos : mixing of $\tilde{H}_u^0, \tilde{H}_d^0, \tilde{B}^0, \tilde{W}^0$

Possible solution of dark matter problem

- Charginos : mixing of charged gauginos and higgsinos
- Unification of coupling constants at some very high scale

Hint for a Grand Unified Theory ?

MSSM

- 2 Higgs doublets H_u and H_d

 $W_{Higgs} = \mu H_u H_d$

- μ is a new undesired scale : so called μ problem $M_Z^2 \simeq -2\mu^2 + 2 \frac{m_{H_d}^2 \tan^2 \beta m_{H_u}^2}{\tan^2 \beta 1}$

$$W_{Higgs} = (\mu + \lambda \hat{S})\hat{H}_u.\hat{H}_d + \xi_F \hat{S} + \frac{1}{2}\mu' \hat{S}^2 + \frac{\kappa}{3}\hat{S}^3$$

NMSSM

• In the Z₃ invariant NMSSM : $\mu = \mu' = \xi_F = 0$

$$W_{sc.inv} = \lambda \hat{S} \hat{H}_u \hat{H}_d + \frac{\kappa}{3} \hat{S}^3$$

Since <S>=s, new effective µ-term :

$$\mu_{eff} = \lambda s$$

... µ-problem solved

NMSSM

- Extended Higgs sector :
 - 3 CP-even Higgs bosons h₁,h₂,h₃
 - 2 Pseudoscalars A₁, A₂
 - 2 charged Higgs bosons H[±]
- h₁ or h₂ could be the one observed at LHC

→ if h1 is gauge singlet, it avoids all constraints and can be very light

NMSSM

• Advantage of the NMSSM : easier to get a Higgs boson with a mass of 125 GeV

MSSM :
$$m_h^2 = m_Z^2 \cos(2\beta) + \frac{3}{(4\pi)^2} \frac{m_t^4}{v^2} \left[\ln \frac{m_{\tilde{t}}^2}{m_t^2} + \frac{X_t^2}{m_{\tilde{t}^2}} \left(1 - \frac{X_t^2}{12m_Z^2} \right) \right]$$

NMSSM : $m_h^2 = m_{h,MSSM}^2 + \lambda^2 v^2 \sin^2(2\beta)$

 Important to investigate the properties of Higgs boson since there could be large deviations from SM expectations

Which signature for γZ channel ?

 V_u

 $\tan(\beta) =$

- Analyses of different decay channels for a given model
- Comparison with Standard Model expectations
- Already measured channels : $H \rightarrow \gamma \gamma$, bb, $\tau \tau$,...
- Future channel : $H \rightarrow \gamma Z$

Need of precise calculation of this partial width

$$\mu = \frac{\sigma}{\sigma_{SM}}$$

• Future channel : $H \rightarrow \gamma Z$

04/12/2013

One needs precise theoretical calculation of this partial width

$H \rightarrow \gamma Z$: Standard case

 $\Gamma(H \to \gamma Z)_{125GeV} = 6.27 \cdot 10^{-6} \text{GeV}$ $BR = 1.54 \cdot 10^{-3}$

If there are other new particles in the loop, it will change this value (like for $\gamma\gamma$ channel)

 $H \rightarrow \gamma Z$

- One loop Feynman diagrams with the following particles in the loop :
 - W, b, t
 - Charged Higgs
 - Charginos
 - Sfermions (stops)
- Only one public code : NMSSMTools (Hugonie, Ellwanger)

...but some of the loop contributions have been omitted in NMSSMTools

$H \rightarrow \gamma Z$: with SloopS

- A code for the calculation of loop diagrams in SUSY (Boudjema, Baro, Semenov, Chalons)
- Lanhep : specification of the model and generation of counterterms
- FeynArts : creation of topologies of loops
- FormCalc/LoopTools : computation of loop processes

$H \rightarrow \gamma Z$: effect of charginos

 Only diagonal contributions taken into account in NMSSMTools

but the vertex $Z\chi_1\chi_2$ exists

 \rightarrow negligible contributions ?

• Charginos mass matrix :

 $\begin{pmatrix} M_2 & g_2 v_u \\ g_2 v_d & \mu_{eff} \end{pmatrix}$

• Scan over parameters μ , M_2 and t_β

$H \rightarrow \gamma Z$: effect of sfermions

- Contributions of sfermions not taken into account in NMSSMTools
- Stops masses can be sufficiently light to give non negligible contributions $\begin{pmatrix} m_{U_3}^2 + h_t^2 v_u^2 (v_u^2 v_d^2) \frac{g_1^2}{3} & h_t (A_t v_u \mu_{eff} v_d) \\ h_t (A_t v_u \mu_{eff} v_d) & m_{Q_3}^2 + h_t^2 v_u^2 + (v_u^2 v_d^2) \left(\frac{g_1^2}{12} + \frac{g_2^2}{4} \right) \end{pmatrix}$
- Since ht is big, important mixings between stops

Scan also over A_t , m^2_{U3} , m^2_{Q3}

$H \to \gamma Z$: Sfermions and charginos

- What happens if we take both effects into account ?
- Is there a compensation, since charginos are fermions and sfermions are scalars ?

$$\frac{\Gamma(h_i \to \gamma Z)_{\text{with } Z\chi_1\chi_2 \text{ and sfermions}}}{\Gamma(h_i \to \gamma Z)_{\text{without } Z\chi_1\chi_2 \text{ nor sfermions}}}$$

$H \to \gamma Z$: Sfermions and charginos

$H \rightarrow \gamma Z$: Sfermions and charginos

04/12

$H \rightarrow \gamma Z$: Sfermions and charginos

Conclusion

• The effect is quite small (<10%), except when the Higgs boson is predominantly singlet

In this case the partial width is suppressed.

• Theoretical imprecision lower than experimental one (at least for LHC)

we don't really need to take these effects into account... for the moment !

Questions ?

1. 1. 14