Measurement of the CKM angle Y in the $\mathrm{B}^{0} \rightarrow \mathbf{D}\left(\mathrm{~K}_{\mathrm{s}}{ }^{\mathrm{II}}\right) \mathbf{K}^{* 0}$ decay at LHCb

Outline

1) Flavour Violation in the Standard Model (SM).
2) $\mathrm{B}^{0} \rightarrow \mathrm{D}\left(\mathrm{K}_{5}^{0} \cap \square\right) \mathrm{K}^{* 0}$ decay and CKM angle γ measurement.
3) Tracking system of the LHCb detector.
4) $\mathrm{B}^{0} \rightarrow \mathrm{D}\left(\mathrm{K}_{\mathrm{s}}^{0} \cap \square\right) \mathrm{K}^{* 0}$ analysis.

Flavour Violation in the Standard Model

Quarks Flavour Mixing

- The quark flavour is not conserved:
$-\mathrm{S} \rightarrow \mathrm{U}$
$-c \rightarrow S$ or d
$-b \rightarrow c$ or u
- t \rightarrow b ors or u
- Transitions inside a same family are the most probable, then family $2 \rightarrow 1$, family $3 \rightarrow 2$ and $3 \rightarrow 1$.
- This mixing is describe by the Cabibbo-Kobayashi-Maskawa (CKM) mechanism.

CKM mechanism

- | Weak eigenstates > $=$ | Mass eigenstates >
- Rotation in quark space: CKM matrix

$$
\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right) \approx\left(\begin{array}{ccc}
\square & \square & \cdot \\
\square & & \square \\
\bullet & \cdot &
\end{array}\right)
$$

V angle

- $\quad \mathrm{y}$ is one of the free parameters of the SM.
- Check the consistency of CKM paradigm:
- Measure a, β, γ separately.
- Measure side length of the triangle.
- Look if it makes a closed triangle.
- $\quad \gamma$ is the least none CKM parameter:
- $\quad V=68{ }^{+10}{ }_{-11}^{\circ}$ (PDG 2012)

$\gamma=\arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right) \longrightarrow \mathrm{Y} \approx$ phase of \mathbf{V}_{ub}

$B^{0} \rightarrow \mathrm{D}\left(\mathrm{K}_{\mathrm{s}}^{0} \pi п\right) \mathrm{K}^{* 0}$ decay and CKM angle $₹$ measurement

b $\rightarrow \mathbf{u} / \mathrm{b} \rightarrow \mathrm{c}$ Interference

$\mathrm{Y}=$ phase difference between V_{ub} and V_{cb}

\bar{B}^{0}

$\mathbf{b} \rightarrow \mathbf{u} / \mathbf{b} \rightarrow \mathbf{c}$ or $\overline{\mathbf{b}} \rightarrow \overline{\mathbf{u}} / \overline{\mathbf{b}} \rightarrow \overline{\mathbf{c}}$ interferences sensitive to Y

Analogy with Young's slits experiment:

Interference sensitive to d

How to see the interference?

- To make the interference between $\mathrm{B}^{0}->\mathrm{D}^{0} \mathrm{~K}^{* 0}$ and $\mathrm{B}^{0}->{\overline{D^{0}} \mathrm{~K}^{* 0}}^{6}$ we look at a common $\mathrm{D}^{0} /{\overline{D^{0}}}^{0}$ final state: $\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{s}}^{0} \pi{ }^{0}$
- Since it is a 3 bodies decay, the phase-space can be described by only 2 invariant

Interference between $\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{* 0}$ and $\mathrm{B}^{0} \rightarrow \overline{\mathrm{D}}^{0} \mathrm{~K}^{* 0}$

Interference between $\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{* 0}$ and $\mathrm{B}^{0} \rightarrow \overline{\mathrm{D}}^{0} \mathrm{~K}^{* 0}$

Interference between $\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{* 0}$ and $\mathrm{B}^{0} \rightarrow \overline{\mathrm{D}}^{0} \mathrm{~K}^{* 0}$

Tracking system of the LHCb detector

How do we measure particles trajectories?

When a charged particle go through the μ-strips or the straw-tubes, it make a "hit".

Hit Machine

Fizan sativese sum

LHCb Event Display

$B^{0} \rightarrow \mathrm{D}\left(\mathrm{K}_{\mathrm{s}}^{0} \pi п\right) \mathrm{K}^{* 0}$ analysis

$\mathrm{B}^{0} \rightarrow \mathrm{D}\left(\mathrm{K}_{\mathrm{s}}^{0} \pi п\right) \mathrm{K} * 0$ analysis

- Analysis strategy:
- Signal selection
- Background characterisation
- 2D fit to estimate the γ value \} Handled in near futur

$\mathrm{B}^{0} \rightarrow \mathrm{D}\left(\mathrm{K}^{0}{ }_{5} п п\right) \mathrm{K}^{* 0}$ topology

To detect our signal coming from the proton-proton collisions, we measure the energies and the momenta of the final particles...

$\mathrm{B}^{0} \rightarrow \mathrm{D}\left(\mathrm{K}_{\mathrm{s}}^{0} п п\right) \mathrm{p}^{0}$ background

But life is not easy, some other decays have a similar topology...

If we detect the π^{+}as a \mathbf{K}^{+}, we will think that the detected event is our $\mathrm{B}^{0} \rightarrow \mathrm{D}\left(\mathrm{K}_{\mathrm{s}}^{0} \Pi \square\right) \mathrm{K}^{* 0}$ signal !
But the reconstructed $m\left(B^{0}\right)$ will be a little bigger than the true B mass value: K is heavier than π

$\mathrm{B}_{(5)}^{0} \rightarrow \mathrm{D}^{*}\left(\mathrm{D}^{0} \mathrm{n}^{0}\right) \mathrm{K}^{* 0}$ background

But life is not easy, some other decays have a similar topology...

If we miss the π^{0}, we will think that the detected event is our $\mathrm{B}^{0} \rightarrow \mathrm{D}\left(\mathrm{K}^{0}{ }_{5} \square п\right) \mathrm{K}^{* 0}$ signal !
But the reconstructed $m\left(B^{0}\right)$ will be smaller than the true B mass value: some energy is missing

Output of the pp collisions

Indeed, if we look at the reconstructed B mass obtained with the pp collisions at the LHC...
B^{0} resonstructed invariant mass

PDG:

$$
\mathrm{m}_{\mathrm{B} 0}=5279 \mathrm{MeV} / \mathrm{c}^{2}
$$

...there is A LOT OF background ${ }^{\wedge \wedge}$

Signal Selection

There is a lot of backaround, so we need to select our signal:

We reject some events which does not fulfill some criteria on:

- invariant masses - transverse momenta
- flight distances - vertex reconstruction quality (Multivariate selection)

Estimation of numbers of events

To know the numbers of signal and background events it remains after the selection: Maximum Likelihood estimation (fit) of the $m\left(\mathrm{~B}^{0}\right)$ distribution.

Estimation of numbers of events

To know the numbers of signal and background events it remains after the selection: Maximum Likelihood estimation (fit) of the $m\left(\mathrm{~B}^{0}\right)$ distribution.

Estimation of the y value

1D fit of $m\left(B^{0}\right)$ to know numbers of signal and backgrounds.

2D fit of $\left(\mathrm{m}^{2}{ }_{+}, \mathrm{m}^{2}\right)$ to estimate the value of Y Just start working on it!

Conclusion

- The quark flavour mixing is described by the CKM mechanism.
- The CKM angle \mathbf{Y} corresponds to the phase difference between $\mathbf{b} \rightarrow \mathbf{u}$ and $\mathbf{b} \rightarrow \mathbf{c}$ transitions.
- We will measure this phase difference with the interference between $\mathrm{B}^{0} \rightarrow \mathrm{D}^{0}\left(\mathrm{~K}_{5}^{0} \cap \mathrm{n}\right) \mathrm{K}^{* 0}$ and $\mathbf{B}^{0} \rightarrow{\overline{D^{0}}}^{0}\left(\mathbf{K}_{s}^{0} \cap п\right) K^{* 0}$ 。
- It will be the first $₹$ measurement with the neutral B.

Quiz

- Why the B^{0} meson have the time to flight before decaying?

BACKUP

$B^{0} \rightarrow D\left(K_{s}^{0} \Pi \pi\right) K^{* 0}$ and $\bar{B}^{0} \rightarrow D\left(K_{s}^{0} \Pi \pi\right) \bar{K} * 0$ Dalitz plots

$\mathcal{P}_{B^{0} / \bar{B}^{0}} \propto\left|A_{D}\left(m_{\mp}^{2}, m_{ \pm}^{2}\right)\right|^{2}+r_{B^{0}}^{2}\left|A_{D}\left(m_{ \pm}^{2}, m_{\mp}^{2}\right)\right|^{2}+2 \kappa r_{B^{0}} \mathcal{R} e\left[A_{D}\left(m_{ \pm}^{2}, m_{\mp}^{2}\right) A_{D}^{*}\left(m_{\mp}^{2}, m_{ \pm}^{2}\right) e^{-i\left(\delta_{B^{0}} \pm \gamma\right)}\right]$

$B^{0} \rightarrow D\left(K_{s}^{0} \Pi \pi\right) K^{* 0}$ and $\bar{B}^{0} \rightarrow D\left(K_{s}^{0} \Pi \pi\right) \bar{K} * 0$ Dalitz plots

$\mathcal{P}_{B^{0} / \bar{B}^{0}} \propto\left|A_{D}\left(m_{\mp}^{2}, m_{ \pm}^{2}\right)\right|^{2}+r_{B^{0}}^{2}\left|A_{D}\left(m_{ \pm}^{2}, m_{\mp}^{2}\right)\right|^{2}+2 \kappa r_{B^{0}} \mathcal{R} e\left[A_{D}\left(m_{ \pm}^{2}, m_{\mp}^{2}\right) A_{D}^{*}\left(m_{\mp}^{2}, m_{ \pm}^{2}\right) e^{-i\left(\delta_{B^{0}} \pm \gamma\right)}\right]$

