Measurement of the CKM angle γ in the $B^0 \rightarrow D(K^0_s \pi \pi)K^{*0}$ decay at LHCb

Outline

- 1) Flavour Violation in the Standard Model (SM).
- 2) $B^0 \rightarrow D(K^0_{\varsigma} \Pi \Pi)K^{*0}$ decay and CKM angle γ measurement.
- 3) Tracking system of the LHCb detector.
- 4) $B^0 \rightarrow D(K^0_s \pi \pi) K^{*0}$ analysis.

Flavour Violation in the Standard Model

Quarks Flavour Mixing

- The quark flavour is not conserved:
 - s→u
 - c→s or d
 - b→c or u
 - t→b or s or u
- Transitions inside a same family are the most probable, then family 2→1, family 3→2 and 3→1.
- This mixing is describe by the Cabibbo-Kobayashi-Maskawa (CKM) mechanism.

CKM mechanism

- | Weak eigenstates > ≠ | Mass eigenstates >
- Rotation in quark space: CKM matrix

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \approx \begin{pmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{pmatrix}$$

- Each term encode the amplitude of the $q_i \rightarrow q_i$ transition.
- The matrix must be unitary:

$$rac{V_{ud}\,V_{ub}^*}{V_{cd}\,V_{cb}^*} + 1 + rac{V_{td}\,V_{tb}^*}{V_{cd}\,V_{cb}^*} = 0$$

y angle

- γ is one of the free parameters of the SM.
- Check the consistency of CKM paradigm:
 - Measure α , β , γ separately.
 - Measure side length of the triangle.
 - Look if it makes a closed triangle.
- y is the least none CKM parameter:

$$- \gamma = 68^{+10}$$
° (PDG 2012)

$$\gamma = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

γ ≈ phase of V_{ub}

$B^0 \rightarrow D(K^0_s \pi \pi)K^{*0}$ decay and CKM angle γ measurement

b→u / b→c Interference

γ = phase difference between V_{ub} and V_{cb}

$b \rightarrow u / b \rightarrow c \text{ or } \overline{b} \rightarrow \overline{u} / \overline{b} \rightarrow \overline{c} \text{ interferences sensitive to } \gamma$

Analogy with Young's slits experiment:

Interference sensitive to d

How to see the interference?

- To make the interference between B°-> $D^{\circ}K^{*\circ}$ and B°-> $\overline{D}^{\circ}K^{*\circ}$ we look at a **common D°/\overline{D}^{\circ}** final state: D $\rightarrow K^{\circ}_{\varsigma}\pi\pi$
- Since it is a 3 bodies decay, the phase-space can be described by only 2 invariant masses: $m^2(K^0_{\xi}\pi^+) = m^2_{\downarrow}$ and $m^2(K^0_{\xi}\pi^-) = m^2_{\downarrow}$

Interference between $B^0 \rightarrow D^0 K^{*0}$ and $B^0 \rightarrow \overline{D}^0 K^{*0}$

Interference between B⁰→D⁰K*⁰and B⁰→D⁰K*⁰

Tracking system of the LHCb detector

How do we measure particles trajectories?

When a **charged particle** go through the μ -strips or the straw-tubes, it make a "**hit**".

Hit Machine

LHCb Event Display

$B^0 \rightarrow D(K^0_s \pi \pi)K^{*0}$ analysis

B⁰→D(K⁰ nn)K*⁰ analysis

- Analysis strategy:
 - Signal selection
 - Background characterisation
 - 2D fit to estimate the γ value } Handled in near futur

Presented today

$B^0 \rightarrow D(K^0_s \pi \pi) K^{*0}$ topology

To detect our signal coming from the proton-proton collisions, we measure the energies and the momenta of the final particles...

... and reconstruct the B $^{\scriptscriptstyle 0}$ invariant mass : $\, \, m_{B^0} = \sqrt{\left(\sum p_i\right)^2} \,$

$B^0 \rightarrow D(K^0_s \pi \pi) \rho^0$ background

If we detect the π^+ as a K^+ , we will think that the detected event is our $B^0 \to D(K^0_s \pi \pi) K^{*0}$ signal !

But the reconstructed m(B 0) will be a little bigger than the true B mass value: K is heavier than π

$B_{(s)}^{0} \rightarrow D^{*}(D^{0}\pi^{0})K^{*0}$ background

But life is not easy, some other decays have a similar topology...

If we miss the π^0 , we will think that the detected event is our $B^0 \to D(K^0_s \pi \pi)K^{*0}$ signal!

But the reconstructed m(Bo) will be smaller than the true B mass value: some energy is missing

Output of the pp collisions

Indeed, if we look at the reconstructed B mass obtained with the pp collisions at the LHC...

B⁰ resonstructed invariant mass

...there is **A LOT OF** background ^^

Signal Selection

There is a lot of background, so we need to select our signal:

We reject some events which does not fulfill some criteria on:

- invariant masses
- flight distances
- (Multivariate selection)
- transverse momenta
- vertex reconstruction quality

Estimation of numbers of events

To know the **numbers of signal and background events** it remains after the selection: Maximum Likelihood estimation (fit) of the m(B⁰) distribution.

Estimation of numbers of events

To know the **numbers of signal and background events** it remains after the selection: Maximum Likelihood estimation (fit) of the m(B⁰) distribution.

Estimation of the y value

1D fit of m(B⁰) to know numbers of signal and backgrounds.

2D fit of (m_+^2, m_-^2) to estimate the value of γ

Just start working on it!

Conclusion

- The quark flavour mixing is described by the CKM mechanism.
- The CKM angle γ corresponds to the phase difference between b→u and b→c transitions.
- We will measure this phase difference with the interference between B⁰→D⁰(K⁰, ΠΠ)K*⁰ and B⁰→D⁰(K⁰, ΠΠ)K*⁰.
- It will be the first y measurement with the neutral B.

Quiz

• Why the B⁰ meson have the time to flight before decaying?

BACKUP

$B^0 \rightarrow D(K_s^0 \Pi \Pi) K^{*0}$ and $\overline{B}^0 \rightarrow D(K_s^0 \Pi \Pi) \overline{K}^{*0}$ Dalitz plots

$$\mathcal{P}_{B^0/\bar{B}^0} \propto \left| A_D(m_{\mp}^2, m_{\pm}^2) \right|^2 + \frac{r_{B^0}^2}{R^0} \left| A_D(m_{\pm}^2, m_{\mp}^2) \right|^2 + 2\kappa r_{B^0} \mathcal{R}e \left[A_D(m_{\pm}^2, m_{\mp}^2) A_D^*(m_{\mp}^2, m_{\pm}^2) e^{-i(\delta_{B^0} \pm \gamma)} \right]$$

$B^0 \rightarrow D(K_s^0 \Pi \Pi) K^{*0}$ and $\overline{B}^0 \rightarrow D(K_s^0 \Pi \Pi) \overline{K}^{*0}$ Dalitz plots

$$\mathcal{P}_{B^0/\bar{B}^0} \propto \left| A_D(m_{\mp}^2, m_{\pm}^2) \right|^2 + \frac{r_{B^0}^2}{R^0} \left| A_D(m_{\pm}^2, m_{\mp}^2) \right|^2 + 2\kappa r_{B^0} \mathcal{R}e \left[A_D(m_{\pm}^2, m_{\mp}^2) A_D^*(m_{\mp}^2, m_{\pm}^2) e^{-i(\delta_{B^0} \pm \gamma)} \right]$$