1 / 30

Journées Jeunes Chercheurs 2013

Vincent Fischer

CEA/IRFU/SPP

December 03rd, 2013

Outline

- 1 Neutrino and oscillations
 - Oscillations (that we understand)
 Oscillations (that we try to understand)
- 2 The CeLAND project The CeLAND source The CeLAND detecto
- The first simulations (my work) Signal Backgrounds
- 4 Conclusion

The neutrino

- First inferred by Pauli in 1930 to explain β decay missing energy
- Discovered in 1956 (reactor neutrinos)
- Weakly interacting particles \rightarrow Very low interaction cross-section \rightarrow Very hard to detect

2 / 30

The neutrino

- First infered by Pauli in 1930 to explain β decay missing energy
- Discovered in 1956 (reactor neutrinos)
- Weakly interacting particles \rightarrow Very low interaction cross-section \rightarrow Very hard to detect

The neutrino

- First infered by Pauli in 1930 to explain β decay missing energy
- Discovered in 1956 (reactor neutrinos)
- Weakly interacting particles → Very low interaction cross-section → Very hard to detect

- First infered by Pauli in 1930 to explain β decay missing energy
- Discovered in 1956 (reactor neutrinos)
- \bullet Weakly interacting particles \to Very low interaction cross-section \to Very hard to detect

The neutrino

- ullet First infered by Pauli in 1930 to explain eta decay missing energy
- Discovered in 1956 (reactor neutrinos)
- \bullet Weakly interacting particles \to Very low interaction cross-section \to Very hard to detect

Neutrino oscillations

- Infered in 1957 by Pontecorvo and discovered in 1998 by Super-Kamiokande (atmospheric ν 's)
- Neutrinos have mass and oscillate between 3 flavors ν_e , ν_μ , ν_τ via the PMNS matrix

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{PMNS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & C_{23} & S_{23} \\ 0 & -S_{23} & C_{23} \end{pmatrix} \begin{pmatrix} C_{13} & 0 & S_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -S_{13}e^{i\delta} & 0 & C_{13} \end{pmatrix} \begin{pmatrix} C_{12} & S_{12} & 0 \\ -S_{12} & C_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\sin^2 2\theta_{23} \sim 1 \qquad \sin^2 2\theta_{13} \sim 0.1 \qquad \sin^2 2\theta_{12} \sim 0.8$$
 Atmospheric ν 's Reactor ν 's Solar ν 's

Oscillation anomalies

- Anomalies found in several experiments:
 - Accelerator experiments (LSND, MiniBoone)
 - Source experiments (Gallex, SAGE)
 - Reactor experiments (Bugey, Rovno, ILL,...) \rightarrow Reactor Antineutrino Anomaly (RAA)
- ullet ightarrow Lead towards the existence of a 4 th neutrino, sterile (no weak interaction) and heavy (\sim eV scale)
- Possible candidate for BSM physics

4th neutrino hypothesis

• 3 (ν_e , ν_u , $\nu_ au$) + 1 (ν_s) oscillation o Simple calculations using 2-neutrino (ν_e, ν_s) oscillations

$$\left(\begin{array}{c} \nu_e \\ \nu_s \end{array}\right) = \left(\begin{array}{cc} C_{new} & S_{new} \\ -S_{new} & C_{new} \end{array}\right) \, \left(\begin{array}{c} \nu_1 \\ \nu_{new} \end{array}\right)$$

After calculations
$$\rightarrow P_{ee} = 1 - \sin^2 2\theta_{new} \sin^2 \frac{\Delta m^2_{new}(eV^2)L(m)}{E(MeV)}$$

Sterile neutrino parameters: $\sin^2 2\theta_{new} \sim 0.1$ and $\Delta m^2_{\rm \tiny max}~\sim~2~eV^2 \rightarrow$ Gives an oscillation length of a few meters

ightarrow Need to test this anomaly at ~ 10 m (corresponds to E = 1 MeV

000

- Need a powerful source of $\bar{\nu_e}$ close to a detector \rightarrow
 - ullet Nuclear reactor + ton scale detector o Nuclear, Stereo
 - Radioactive source + kiloton scale detector → CeLAND
- ullet Source experiments advantages o
 - Search for an oscillation pattern in both distance and energy (shape analysis)
 - Search for an expected neutrino deficit (rate analysis)
 - Compact source + Good vertex resolution o Good sensitivity to Δm^2_{new}
 - Powerful source + Big well-known detector \rightarrow Few % uncertainties (stat. + syst.) \rightarrow Good sensitivity to $\sin^2 2\theta_{new}$
- CeLAND design
 - ightarrow 75 kCi (2.8 PBq !) $\bar{\nu_e}$ generator in the KamLAND neutrino detector

Outline

- Neutrino and oscillations
 Oscillations (that we understand)
 Oscillations (that we try to understand)
- 2 The CeLAND project
 The CeLAND source
 The CeLAND detector
- 3 The first simulations (my work Signal Backgrounds
- 4 Conclusion

- Commissariat à l'Energie Atomique, Centre de Saclay, France
- Astroparticules et Cosmologie, APC, Université de Paris 7, France
- Research Center for Neutrino Science, Tohoku University, Japan
- Colorado State University, Fort Collins, USA
- Kavli Institute, University of Tokyo, Japan
- Lawrence Berkeley National Laboratory, Berkeley, USA
- University of California, Berkeley, USA
- Nikhef and the University of Amsterdam, Netherlands
- North Carolina Central University, Durham, USA
- Graduate School of Science, Osaka University, Japan
- Center of Theoretical and Experimental Physics, Moscow, Russia
- Frumkin Institute of Physical chemistry and Electrochemistry, Russia
- University of Hawaii at Manoa, Honolulu, USA
- University of North Carolina, Chapel Hill, USA
- University of Tennessee, Knoxville, USA
- University of Washington, Seattle, USA

 \sim 60 persons in 18 institutes worldwide

CeLAND ¹⁴⁴Ce-¹⁴⁴Pr source

- Source emitting $\bar{\nu_e}$ by β -decay
- ullet Need energetic $ar{
 u_e}
 ightarrow \mathsf{High}$ Q-value
- Need enough time for transportation → Reasonable half-life → Contradictory statements
- Solution \rightarrow ¹⁴⁴Ce-¹⁴⁴Pr pair
 - ightarrow Gives $ar{
 u_e}$ up to 2.6 MeV and half-life of \sim 285 days

Source production

- Cerium is a rare earth found abondantly ($\sim 5\%$) in spent nuclear fuel
- Production at Mayak PA (Russia) reprocessing facility using fresh irradiated fuel from the Cola Power plant
- 10 t of fuel \rightarrow 25 g of 144 Ce (75 kCi)
- ¹⁴⁴Ce extraction using chromatography (\sim 4-6 months)

Hot Cells for Conditioning 144CeO Canyon Feed Tank C2 | C3 | C4 | C5 | C6 | C7 Separation Columns

Source shielding

- Several γ rays emitted through 144 Pr decay \rightarrow 1.489 MeV (0.3 %) and 2.185 MeV (0.7 %)
- Shielding needed for physics (background reduction) and safety (radiation dose)
- Design \rightarrow 16 cm thick cylinder of tungsten alloy ($d=18.5~g.cm^{-3}$)

Dose calculations

- Goal: Determine the absorbed dose received around the shielding
- First approximations obtained using analytical computations: $D(J/g/s) = \mathcal{A}[Bq] \times \frac{1}{4\pi d^2[cm^2]} \times \frac{\mu}{\rho}[g/cm^2] \times E[J]$
- Cross-checked using particle simulation codes
- Results: Absorbed dose of 42 μ Sv.h $^{-1}$ 1 m away from the shielding (maximum dose for workers: 20 mSv.yr $^{-1}$)

- Large scale liquid scintillator detector located in the Kamioka mine (Japan) since 1998
- 1 kton of scintillator oil (6.5 m sphere) + 2 m thick buffer (non-scintillating)
- 3.2 kton of water as external radioactivity shield and Cerenkov muon veto
- 1879 PMT's → Good vertex and energy resolution

- Inverse beta decay: $\bar{\nu_e} + p \rightarrow e^+ + n$
- Higher cross section than other ν interactions $\sigma_{IBD} \sim 10^{-43} cm^{-2}$
- Signature \rightarrow Prompt signal (e^+ energy deposition) followed by delayed signal (neutron capture on H at 2.2 MeV)
- Look for: Energy signature (0.9 to 2.6 MeV for prompt, 1.8 to 2.6 MeV for delayed), time and space coincidence \rightarrow Huge background reduction I

What do we expect as a signal?

Neutrino deficit dependant on the energy and distance to the source

Source deployment in KamLAND

- 2014: Source production @ Mayak (up to 6 months)
- Early 2015: Transportation and deployment in KamLAND (phase 1)
- 2016: Possible deployment at KamLAND center (phase 2)

Outline

- 3 The first simulations (my work)

CeLAND simulations

- Signal and backgrounds simulations needed to caracterize sensitivity
- Use of Geant4 and Tripoli4 (Monte-Carlo particle transport simulation codes)

Signal

Backgrounds

- $\bar{\nu_e}$ energy as seen in KamLAND (oscillated or not)
- Dependent on the source-detector distance (different CeLAND phases)
- KamLAND 'regular' backgrounds (already measured)
- Source backgrounds (to be determined)

- Geant4 does not handle $\bar{\nu_e}$ interaction \rightarrow Need to create an $e^+ n$ pair
- Oscillation parameters: $\sin^2 2\theta_{new} = 0.1$ and $\Delta m_{new}^2 = 2 \ eV^2$
- Normalized to the \sim 20000 events expected within a year

Signal simulations - Results

The first simulations (my work)

Backgrounds simulations

- KamLAND backgrounds:
 - Natural radioactivity
 - Cosmogenics (muon induced radioactive isotopes)
 - Reactor ν̄_e
 - Geoneutrinos
 - → These backgrounds have been measured precisely by KamLAND
 - → Almost negligible wrt CeLAND expected signal
- CeLAND backgrounds:
 - Gamma rays from the source
 - Neutrons from spontaneous fission of residual fission products
 - → Potentialy dangerous
 - → Need to be simulated in order to specify the appropriate contamination in neutron emitter impurities

Gamma background

- Random γ interaction \rightarrow Could mimic a prompt or a delayed (or both) signal \rightarrow Fake neutrino event !
- Source gamma activity = 20 TBq!
- Attenuation of at least 10^{12} needed to achieve a reasonable ${\rm S/B}$ ratio
- 16 cm of tungsten + 2 m of buffer oil should be enough \rightarrow Simulations will give exact attenuation and detected energy spectra
- Hard task: 1 s of 'experiment time' (20×10^{12} gammas) \rightarrow 200 000 hours of simulations!

- Fuel irradiation can produce small amounts of heavier elements by neutron capture reactions
- However, the chromatography process purifies a lot of these actinides. But how much?

These elements (Cm, Cf,...) are likely to undergo spontaneous fission reactions ($X \rightarrow Y + Z +$ several neutrons)

→ Potential source of background

00000

The first simulations (my work)

- Neutrons can be thermalized and captured around or in the detector
- They are emitted in coincidence \rightarrow Time correlation \rightarrow Perfect mimic a a neutrino event
- Hard to shield neutrons (need light elements such as H to thermalize and high capture cross-section elements such as boron)
- Need simulations to evaluate the impact of this background and whether we should shield it or not?

Geant4 vs Tripoli4

- Geant4: Complete simulation, keep tracks, secondary particles, etc...
 - → Ressources consuming
- Tripoli4: No tracks, easy to bias \rightarrow Faster computation
- Seems like:
 - Geant4 → Suited for neutron simulations
 - Tripoli4 → Suited for gamma simulations
- However! Geant4 handles neutron processes quite badly \rightarrow Need Tripoli4 cross-check (used for reactor core simulations)

Outline

- Neutrino and oscillations
 Oscillations (that we understand)
 Oscillations (that we try to understand)
- 2 The CeLAND project
 The CeLAND source
 The CeLAND detector
- 3 The first simulations (my work) Signal Backgrounds
- 4 Conclusion

Conclusion

- Simulations still ongoing to determine the impact of gamma+neutron background
- ullet Preliminary results: 16 cm of tungsten + at least 10 cm of borated water might be needed
- New Tripoli4 simulations will give a definitive answer soon

Thanks

Thank you for your attention!

Source transport

- Option A: Train from Mayak to Vladivostok + boat to Tokyo + truck to KamLAND (\sim 4 weeks)
- Option B: Plane from Mayak to Japan + truck to KamLAND (\sim 2 weeks)

Liquid scintillators

- Scintillation: Process by which ionization produced by charged particles excites a material and light is emitted by the de-excitation
- Liquid scintillators: Organic scintillator diluted in an optically-inert liquid (mineral oil,..)
- Basically: Charged particle ionizes liquid \rightarrow Excites molecules that de-excites emitting light
- This light is detected using photomultiplier tubes (PMT's) that transforms it into a current

The reactor antineutrino anomaly (RAA)

- Revised calculation of the $\bar{\nu_e}$ rate from nuclear reactors \to 3.5 % $\bar{\nu_e}$ deficit
- New $\bar{\nu_e}$ cross-sections \rightarrow Another 3.5 % $\bar{\nu_e}$ deficit
- This new flux gives a mean $\bar{\nu_e}$ deficit of $R^R=0.927\pm0.023~(3~\sigma)$ for 19 previous short range experiments

- Other sterile neutrino project developped at CEA (SPhN) → See Maxime Pequignot's talk
- Based on the Nucifer experiment → Small detector close to a research reactor (ILL @ Grenoble)
- ullet Idea: Look for the oscillation pattern using a segmented detector ullet Difference of rate and spectral shape in different sections
- Challenges: Deployment that close to a nuclear core and high neutron background

