Low Mass Dileptons: from the SPS to the LHC

Antonio URAS
ALICE Lyon group @ IPNL

Probing the Strong Interaction at A Fixed Target Experiment with the LHC beams

12-17 janvier 2014 • École de Physique des Houches
Physics Motivations

Second and Third generations of experiments at the SPS:
- Helios-3, CERES, NA38/50
- NA60

STAR and PHENIX at the RHIC
- Top energy run
- Beam Energy Scan

Low Mass Dileptons in ALICE at the LHC
- pp and p-Pb reference
- Preliminary results in Pb-Pb
High Mass Region ($M > 3 \text{ GeV}/c^2$)
- Primordial emission, Drell-Yan
- Quarkonia and open heavy flavors (mostly beauty)

Intermediate Mass Region ($1 < M < 3 \text{ GeV}/c^2$)
- Thermal radiation from QGP
- Open heavy flavors (mostly charm)

Low Mass Region ($M < 1 \text{ GeV}/c^2$)
- Dalitz and 2-body decays of light narrow resonances (close to freeze-out)
- Thermal emission dominantly hadronic (from a hadron gas), mediated by the broad vector meson ρ in the form $\pi^+\pi^- \rightarrow \rho \rightarrow \ell^+\ell^-$
Ultimate goal: inferring signatures of QCD phase transitions (chiral symmetry restoration and/or deconfinement)

A more imminent (and relatively easier) objective: describing medium modifications of the vector mesons spectral function.

Also accessible: strangeness production via ϕ/ω ratio. Strangeness enhancement historically predicted to be a signature for the presence of a QGP phase. ([Phys. Rev. Lett., 48:1066, 1982](#))

Measurements in pp and p-A collisions → reference for interpreting heavy-ion data.
Varying the collision **energy** → varying the initial temperature and the net baryon density on the QCD phase diagram

Warning: **total baryon density also important** in contributing to in-medium modifications of vector mesons line shapes → still relevant at RHIC and LHC where the net baryon density approaches zero

Hadronic Many-Body Theory

for vector mesons

[Ko et al, Chanfray et al, Herrmann et al, Rapp et al, ...]
2nd and 3rd generations of experiments at the SPS
Interest in lepton-pair production in high-energy collisions dates back to the '70s, triggered by the detection of Drell-Yan process and the J/ψ.

The flood of experimental findings also involved the Low Mass Region (below 1 GeV/c²) where data were compared to a “hadronic-decay cocktail” containing all contributions known at that time.

An excess of lepton pairs above the known sources was indeed found. It was finally recognized as due to a severe underestimation of the η Dalitz contributions, but... in the meantime, these dubious pp results had relevant consequences:

- Bjorken and Weisberg proposed for the first time partons produced in the collisions to be a potential, further source of continuum lepton pairs especially at low masses.
- Shuryak proposed the production of deconfined partons in thermal equilibrium during the collisions and phrased the terms “Quark Gluon Plasma” and “Thermal Radiation”
- In the mid-80s, the SPS started its heavy-ion program...
Low Mass Dimuons in NA38 and NA50

- No excess in p-U collisions w.r.t. the Hadronic Cocktail
- Strangeness enhancement in Pb-Pb, addressed via φ/ω measurement
- No sensitivity to any low mass excess due to the limited acceptance (detector optimized for J/ψ studies)

Low Mass Dileptons in Helios-3 and CERES

- **Helios-3 (NA34-3):** dimuon excess in S-W w.r.t. p-W

- **CERES (NA45):** dielectron excess in Pb-Au w.r.t. Hadronic Cocktail.

 First theoretical attempts to explain the excess on the basis of in-medium effects. Mass shift and Broadening scenarios could not be discriminated because of the limited data quality

Helios-3 (NA34-3): dimuon excess in S-W w.r.t. p-W

CERES (NA45): dielectron excess in Pb-Au w.r.t. Hadronic Cocktail.

First theoretical attempts to explain the excess on the basis of in-medium effects. Mass shift and Broadening scenarios could not be discriminated because of the limited data quality

Status before NA60:

- Vacuum ρ unable to describe Low-Mass dileptons in Heavy-Ion data
- Various scenarios for in-medium modifications:
 - decrease of ρ mass (Brown-Rho), mass expected to scale with $\langle qq \rangle$ condensate
 - broadening of ρ spectral function (Rapp-Wambach) due to hadronic (including baryons) scattering

Both scenarios rely on high-baryon densities, both showed good agreement with existing 158 and 40 AGeV data (CERES)
NA60 data raised the experimental precision to an unprecedented level, issuing serious challenges to theoretical models.

Excess is isolated without any \textit{a priori} assumption on its characteristics.

Key points of NA60:

- Dimuons allow higher luminosities than dielectrons.
- Double, independent tracking: excellent mass resolution and background rejection.
- Acceptance down to zero p_T for low masses.
Excess at low mass spectacularly well described by thermal models. E.g. the one by Rapp & Hees (broadened ρ + QGP + multi-hadron annihilations)

Purely exponential m_T distributions: at low masses the T parameter monotonically rises up to the nominal pole of the ρ meson: radial flow of a “hadron-like” dilepton source
- **Planck-like (nearly exponential) shape of intermediate masses.** Exponential m_T spectra with $T \approx 200$ MeV, basically flat vs mass: temperature sensibly larger than T_c suggests primordial (partonic) emission source.

- **Intermediate mass region is thus maximally sensitive to the QGP:** possibility to extract the (average) fireball lifetime and study the EoS varying the baryon density.
Other results from the Low Mass Region, not shown in this presentation:

- **Angular distributions for excess dilepton**: structure function parameters λ, μ, ν compatible with zero confirm the thermal emission from a randomized system.

- **Precision study of the ϕ meson** in the $\mu\mu$ channel. Extraction of ϕ signal in the KK channel: direct comparison of leptonic and hadronic decay channels.

- **Precision study of ρ line shape in cold nuclear matter** and first measurement of the Boltzmann factor. **Precision measurement of the Dalitz decay form factors** for the η and ω mesons.

- Low mass neutral meson production in p-A collisions.
STAR and PHENIX at the RHIC
The STAR and PHENIX Detectors

- **STAR:**
 Electron tracking and identification with TPC + TOF in $0 < \phi < 2\pi$, $|\eta| < 0.9$ (electron purity at least 95% in Au+Au)

- **PHENIX:**
 Electron tracking and identification with Drift + MWPC + RICH in two arms each covering $\pi/2$ in azimuth and $|\eta| < 0.35$
In pp collisions, agreement is observed both in STAR and PHENIX between the measured yields and the expected yields from a range of hadronic decays, heavy-flavor decays, and Drell-Yan production.

Baseline for the measurements of any excess in Heavy-Ion collisions

Dielectrons in Au-Au from PHENIX: $\sqrt{s_{NN}} = 200$ GeV

PHENIX excess at low masses:
- Increasing rapidly with centrality
- Concentrated at low p_T ($p_T < 1$ GeV/c)
- Cannot be reconciled within any of the theoretical models proposed

However: measurement affected by very small signal-to-background ratio (the bulk of the background in this mass region comes from pairs of electrons that are from different π^0 ancestors)

New data taking in 2009/10 with the Hadron Blind Detector, with an improvement of the S/B by a factor ~ 5
Results of HBD analysis in (0-10%) and (10-20%) centrality classes not yet available.

Preliminary results with the HBD for the available centrality classes are consistent with the ones from the previous analysis.

Waiting for the HBD results in the two most central classes...

Dielectrons in Au-Au from PHENIX: \(\sqrt{s_{\text{NN}}} = 200 \) GeV

Excess measured by STAR is significantly lower than the one from PHENIX

Both effective many-body calculation (Rapp et al.) with microscopic transport model and Parton-Hadron String Dynamics (Linnyk et al.) satisfactorily describe the shape and magnitude of the LMR enhancement. They already described SPS data

Both models fail to reproduce the dielectron enhancement reported by PHENIX
LMR enhancement in centrality classes

Very little centrality dependence of the observed excess

A comparison of the dilepton yield in $0.15 < M < 0.75$ GeV/c2 scaled to the number of participants appears to indicate an increase of the LMR enhancement with increasing centrality
Systematic study of excess establishing **consistency with previous SPS results**

Strongly broadened ρ **spectral function plus QGP and Hadron Gas contributions**, already working at the SPS energy, describe the data up to top RHIC energy

Universal emission source, with hadronic medium effects depending upon the **total** baryon density

Low Mass Dileptons in ALICE at the LHC
The ALICE Apparatus

- **Dimuons** \rightarrow $2.5 < \eta < 4$
 Muon Arm: MWPC Tracking
 Chambers + RPC Muon Trigger

- **Dielectrons** \rightarrow $|\eta| < 0.9$
 Central Barrel: Si Inner Tracking
 System + Time Projection Chamber + Time Of Flight

- **pp collisions at 2.76 TeV and 7 TeV**
- **Pb-Pb collisions at 2.76 TeV per nucleon pair**
- **p-Pb and Pb-p collisions at 5.02 TeV per nucleon pair**
Results from Run 1: pp Collisions

- Low Mass Dimuon and Dielectron spectra at 7 TeV: **good agreement** between signal and MC sources

- Data at 2.76 TeV also agree with MC, with larger uncertainties due to the smaller data sample

Results from Run 1: p-Pb Collisions

- Preliminary results only available for the dimuon data
- Fair agreement between data and hadronic cocktail + open heavy flavors
- Various studies ongoing both for resonances and continuum from open HF
Results from Run 1: Pb-Pb Collisions

- **Dimuon signal fairly described** by vacuum ρ/ω and ϕ signals + continuum from open charm/beauty and Dalitz decays. Dielectron analysis ongoing.

- **No precision study of the dimuon continuum** due to the large statistical uncertainties and the acceptance starting from $p_T(\mu\mu) \sim 2$ GeV/c.
Low-mass dilepton physics spanned three orders of magnitude in the center of mass energy in 25 years, going from $o(20)$ GeV at the SPS to $o(200)$ GeV at the RHIC to $o(2000)$ GeV at the LHC.

SPS experimental scenario is dominated by the high precision results of NA60 in the dimuon channel: first measurement of the in-medium ρ spectral function and of thermal radiation at intermediate masses.

RHIC results on low-mass dielectrons suffer from the luminosity limitations typical of colliders, and from some inconsistencies between the measurements in STAR and PHENIX in the most central Au-Au collisions. First results from the RHIC Beam Energy Scan program issued by STAR: key point to link SPS and RHIC observations.

Low-mass dilepton measurement at the LHC: a challenge with ALICE as the only competitor. Both dielectron (mid-rapidity) and dimuon (forward rapidity) channels began to produce results. Statistical uncertainties still dominate the measurements: waiting for LHC Run2 and the upgrade for Run3(-4-5).
Electromagnetic radiation in heavy-ion collisions, in the form of dilepton emission, continues to illuminate the properties of the formed medium.

Low-mass dilepton spectra and their interpretation are developing into a rather consistent picture, where the melting of the ρ meson established at SPS, thanks to the unprecedented precision of the NA60 data, seems to prevail also at RHIC.

The ρ melting is theoretically compatible with chiral symmetry restoration and suggestive for a gradual change in the effective degrees of freedom in the system (crossover more than 1$^{\text{st}}$ or 2$^{\text{nd}}$ order transition when going from confined to deconfined phase).

Temperature slopes extracted from the invariant mass and m_T spectra suggest a first evidence of observation of an electromagnetic thermal radiation from the QCD transition region.
Backup Slides
“For the ρ meson, the broadening amounts to a few hundred MeV at hadronic densities of $\rho_h = 0.2 \text{ fm}^{-3}$, leading to its melting when extrapolated into the regime of the expected QCD phase boundary ($T \approx 170\text{MeV}$). The dissolution of the hadronic resonance structure suggests a change of the relevant degrees of freedom in the system, and thus may be interpreted as an indicator of deconfinement. Another issue is if and how these medium effects signal the restoration of the spontaneously broken chiral symmetry.”

“Another issue is if and how these medium effects signal the restoration of the spontaneously broken chiral symmetry. This is quantified by Weinberg sum rules. Although we still do not have a proof of chiral restoration, a strongly broadened spectral function, as will be used in applications to dilepton data, is compatible with it. Another indication for this compatibility arises from the realization that the processes generating the ρ broadening (resonances and pion cloud modifications) find their counterparts in reducing the chiral.”
Why Dileptons?

- Photons: 1 variable: p_T
- Lepton pairs: 2 variables: M, p_T

Relevant for thermal radiation:
- p_T sensitive to temperature and expansion velocity
- M only sensitive to temperature (Lorentz invariant)

Approximate mass spectrum (for flat spectral function, and interpreting T as the average temperature over the space-time evolution):

$$
\frac{dN}{dM} \propto M^{3/2} \times \exp\left(-\frac{M}{T}\right)
$$

→ 'Planck-like'

The only true (Lorentz invariant) thermometer of the field

Systematic uncertainties:
- Theory, from fits to RR and DZ: $T = 215$ MeV; $T_{1.2 \text{ GeV}} = 205$, $T_{2.5 \text{ GeV}} = 225$
- Data: oversubtraction of DY by 20/30% $\Delta T = -10/-20$ MeV
Limited acceptance at low masses, especially in Pb-Pb.

NA38, NA50, Helios-3 and CERES: Phase Space

Low Mass Dileptons: from the SPS to the LHC
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>62.4</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>19.6</td>
<td></td>
</tr>
<tr>
<td>11.5</td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

- **Au+Au**
- **U+U**
- **Cu+Au**
- **Cu+Cu**
- **d+Au**

STAR only for energies 11.5, 7.7, and 5.0. *Test run* for energy 5.0 in 2010.
Au-Au minimum bias measurements: strong excess at low masses for PHENIX after all expected sources are included
STAR dielectron elliptic-flow measurements in Au+Au collisions at $\sqrt{s} = 200$ GeV as a function of the dielectron invariant mass

- The elliptic flow, v_2, is calculated using the event-plane method in which the event plane has been reconstructed from TPC tracks.

- The expected v_2 from a cocktail simulation based on the contributions from π^0, η, ω, and ϕ mesons is within uncertainties consistent with the measurements.
In Au+Au collisions, the extraction of information from the HBD is complicated due to presence of scintillation light. This results in a significantly higher occupancy and a highly fluctuating background in the HBD pad readout, which becomes especially severe in the most central events.

To tackle this, two independent approaches were used to estimate the background around projections of candidate tracks with similar performance. The dielectron background subtraction is done in two steps. The first step involves subtracting the combinatoric background using mixed events. It is followed by the subtraction of an estimation of the correlated backgrounds.
Reference: hadron cocktail at masses of 0.5-0.6 GeV

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Centrality</th>
<th>Lepton flavor</th>
<th>B/S as meas. or simul.</th>
<th>B/S rescaled to dNch/dy=300</th>
</tr>
</thead>
<tbody>
<tr>
<td>HADES-SIS100</td>
<td>semicentr</td>
<td>e+e-</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>CERES DR</td>
<td>semicentr</td>
<td>e+e-</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>CERES SR/TPC</td>
<td>central</td>
<td>e+e-</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>PHENIX with HBD</td>
<td>central</td>
<td>e+e-</td>
<td>250</td>
<td>100</td>
</tr>
<tr>
<td>PHENIX w/o HBD</td>
<td>central</td>
<td>e+e-</td>
<td>1300</td>
<td>600</td>
</tr>
<tr>
<td>STAR</td>
<td>central</td>
<td>e+e-</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>ALICE Upg ITS</td>
<td>central</td>
<td>e+e-</td>
<td>1200</td>
<td>200</td>
</tr>
<tr>
<td>CBM-SIS100</td>
<td>central</td>
<td>e+e-</td>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>CBM-SIS300</td>
<td>central</td>
<td>e+e-</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>NA60 (InIn)</td>
<td>semicentr</td>
<td>μ+μ-</td>
<td>35</td>
<td>80</td>
</tr>
<tr>
<td>NA60-like (20AGeV)</td>
<td>central</td>
<td>μ+μ-</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>CBM-SIS300</td>
<td>central</td>
<td>μ+μ-</td>
<td>600 (200)</td>
<td>600 (200)</td>
</tr>
</tbody>
</table>

Data / simulations PbPb