

Charmonium production from SPS to LHC

Roberta Arnaldi INFN Torino (Italy)

Probing the strong interaction at A Fixed Target ExpeRiment with LHC beams

Les Houches, 12-17 January 2014

From suppression...to (re)combination

Differences in the binding energies of the quarkonium states lead to a sequential melting of the states with increasing temperature (Digal,Petrecki,Satz PRD 64(2001) 0940150)

→ thermometer of the initial QGP temperature

Increasing the energy of the collision the $c\bar{c}$ pair multiplicity increases

In most central AA collisions	SPS 20 GeV	RHIC 200GeV	LHC 2.76TeV
N _{ccbar} /event	~0.2	~10	~75

Energy Density

An enhancement via (re)combination of cc pairs producing quarkonia can take place at hadronization or during QGP stage

P. Braun-Muzinger and J. Stachel, Phys. Lett. B490(2000) 196, R. Thews et al, Phys.ReV.C63:054905(2001)

How can we measure medium effects?

Nuclear modification factor *R*_{AA}:

compare quarkonium yield in AA with the pp one, scaled by a geometrical factor (from Glauber model)

If yield scales with the number of binary collisions $\rightarrow R_{AA} = 1$

→ If there are medium effects → $R_{AA} \neq 1$

Hot Medium effects:

- quarkonium suppression
- enhancement due to recombination

need infos on quarkonium production in pA (dA) collisions!

"Low energy" experiments...

Charmonium production deeply investigated at

SPS: first evidence of anomalous suppression (i.e., beyond CNM expectations) in Pb-Pb at √s= 17 GeV RHIC: suppression, strongly y-dependent, in Au-Au at √s= 200 GeV

"Low energy" experiments...

Charmonium production deeply investigated at

SPS (NA50, NA60) $\sqrt{s_{NN}} = 17$ GeV RHIC (PHENIX,STAR) $\sqrt{s_{NN}} = 39,62.4,200$ GeV

Puzzles from SPS and RHIC

- RHIC: stronger suppression at forward rapidities
- SPS vs. RHIC: similar R_{AA} pattern versus centrality

Hint for (re)combination at RHIC?

No final theoretical explanation

Decisive inputs expected from LHC results, having access to:

higher energy

- larger cc multiplicity
- other quarkonium states (bottomonium)

RHIC: results from different AA systems

RHIC: quarkonium measurements done over a wide range of energies and collision species

Similar suppression across the different ion-ion collisions

RHIC: results from different collision energy

 $J/\psi R_{AuAu}$ has been studied as a function of the collision energy, at $\sqrt{s_{NN}} = 200, 62$ and 39 GeV Phys. Rev C 86 064901 (2012)

Rather similar pattern observed in Au-Au at different energies

RHIC: results from different collision energy

 $J/\psi R_{AuAu}$ has been studied as a function of the collision energy, at $\sqrt{s_{NN}} = 200, 62$ and 39GeV Phys. Rev C 86 064901 (2012)

Rather similar pattern observed in Au-Au at different energies

Data can provide constraints for theoretical models

Similarity of R_{AA} at different $\sqrt{s_{NN}}$ may originate from interplay of suppression and regeneration contributions (direct suppression changes by ~50%)

pp and pA data at the same energies are needed for more quantitative conclusions

LHC experiments

Currently available AA and pA results:

Complementary quarkonium results from LHC experiments

ALICE: low $p_T J/\psi$

How does RHIC suppression compare to LHC results?

Clear J/ ψ suppression with almost no centrality dependence above $N_{\text{part}} \sim 100$

Less J/ ψ suppression at mid-rapidity wrt forward y for central events

Comparison with PHENIX: ALICE results show weaker centrality dependence and smaller suppression for central events

Is this the expected signature for (re)combination ?

ALICE R_{AA} vs p_{T}

 J/ψ production via (re)combination should be more important at low transverse momentum $\Rightarrow p_T$ region accessible by ALICE

Striking difference between the PHENIX and ALICE patterns, in particular at low p_T

ALICE R_{AA} vs p_{T}

J/ψ production via (re)combination should be more important at low transverse momentum $\Rightarrow p_T$ region accessible by ALICE

Models: ~50% of low- p_T J/ ψ are produced via (re)combination, while at high p_T the contribution is negligible 12

CMS: high $p_T J/\psi$

The high p_{T} region can be investigated by CMS!

J/ψ flow

The contribution of J/ψ from (re)combination should lead to a significant elliptic flow signal at LHC energy

J/ψ vs D in AA collisions

Open charm should be a very good reference to study J/ ψ suppression (a' la Satz)

Interesting comparison between ALICE and CMS J/ ψ compared to D

Caveat:

complicate to compare J/ ψ and D R_{AA} at LHC because of restricted kinematic regions.

Low p_T D not accessible for the moment

Different trend observed at low p_T at RHIC. At high p_T trend is similar to the LHC one

$\psi(2S)$ in AA at lower energy exp.

Study of other charmonium states can help constraining theoretical models

$\psi(2S)$ in Pb-Pb at LHC

 $\psi(2S)$ studied by both CMS and ALICE (different kinematics) comparing the $\psi(2S)$ yield to the J/ ψ one in Pb-Pb and in pp

Nucl.Phys.A 19 (2013), pp. 595-598 CMS PAS HIN-12-007

Where are we?

28 years after first suppression prediction, this is observed in the charmonium (and bottomonium) sector with very good accuracy!

Two main mechanisms at play:

- 1. Suppression in a deconfined medium
- 2. Re-combination (for charmonium) at high \sqrt{s}

can qualitatively explain the main features of the results

To move towards a more quantitative understanding, a precise knowledge of cold nuclear matter effects is crucial!

pA/dA results, where no hot medium should be formed, are needed to:

1. investigate initial/final state CNM effects on J/ψ : shadowing, energy loss, parton saturation effects, cc break-up in the medium...

2. build a reference for AA collisions

J/ψ production in d-Au

CNM effects studied in a large kinematic range → different mechanisms playing a role

Strong centrality dependence, not expected from EPS09 with linear dependence on nuclear thickness +break-up σ

J / ψ R_{dAu} vs p_T: shape is similar at forward and mid-y → shadowing+Cronin+break-up contributions might explain the pattern

different shape at backward y

 \rightarrow not easy to be explained by models

No models describes simultaneously y, p_T and centrality dependence **19**

J/ψ and HF in d-Au

HF and quarkonia are sensitive to similar initial state effects, apart from charmonium in medium break-up

Can further constraints on charmonium break-up be inferred from the comparison to HF R_{AA} ?

Caveat: different kinematic

pA: $J/\psi R_{pA} vs y$

 R_{pA} decreases towards forward y

Theoretical predictions: reasonable agreement with

- shadowing EPS09 NLO calculations (R. Vogt) or EPS09 LO (E. Ferreiro et al)
- models including coherent parton energy loss contribution (F. Arleo et al)

CGC description (H. Fujii et al) seems not to be favoured

Very good agreement between ALICE vs LHCb results

J/ψ nuclear modification factor R_{pA} vs p_T

Forward rapidity

Mid-rapidity

Backward rapidity

Forward y: R_{pA} increases towards high p_T

Mid-rapidity: R_{pA} tends to increase vs p_{T}

Backward y: R_{pA} is rather flat and close to unity

Theoretical predictions: reasonable agreement with

- shadowing EPS09 NLO calculations (R. Vogt)
- models including coherent parton energy loss contribution (F. Arleo et al)

CGC description (H. Fujii et al) seems not to be favoured

$J/\psi R_{pPb}(p_T) \text{ vs } R_{PbPb}(p_T)$

Hypothesis:

2→1 kinematics for J/ ψ production → similar x_q in spite of different \sqrt{s} and y

factorization of shadowing effects in p-Pb and Pb-Pb: pshad p p

 $R_{PbPb}^{shad} = R_{pPb} \times R_{Pbp}$

 R_{PbPb} enhanced at low p_{T} when corrected by this shadowing evaluation

$\psi(2S)$ measurements in p-A

 $\phi \psi(2S)$ is clearly suppressed in p-A wrt pp (at $\sqrt{s}=7$ TeV)

$\psi(2S)$ measurements in p-A

$\psi(2S)/J/\psi$ strongly decreased from pp to p-Pb

 $\psi(2S)/J/\psi$ suppression is observed also in mid-rapidity d-Au results at $\sqrt{s}=200$ GeV Shadowing and/or coherent energy loss don't explain the stronger ψ(2S) suppression (same treatment for ψ(2S) and J/ψ)

Hot medium effects?

$\psi(2S)$ measurements in d-Au

 $\psi(2S) \sim 3$ times more suppressed than J/ ψ in central events

If $\psi(2S)$ suppression is due to the break-up of the preresonant state, it should be identical to J/ψ

Near future: p-Cu, p-Si, p-Au in 2015 at RHIC!

Conclusions

Quarkonia study in heavy ion collisions is already a 25 years long story!

- First LHC run has now provided a large wealth of charmonium and bottomonium results to complement results from SPS and RHIC!
 - hot only J/ψ , but also $\psi(2S)$ (and Υ) are now accessible in various kinematic regions
 - complicate picture in AA because of the interplay of many mechanisms: scenario qualitatively understood as a combination of suppression and (re)combination processes
 - pA and dA data now available: crucial to define cold nuclear matter effects ...but non trivial effects observed on excited quarkonium states!

History of heavy-ion quarkonium studies

Quarkonium suppression is, since 25 years, one of the most striking signatures for QGP formation in AA collisions

Where are we?

27 years after first suppression prediction, this is observed in the charmonium and bottomonium sector with very good accuracy!

Quarkonium production

Quarkonium production can proceed:

- directly in the interaction of the initial partons
- via the decay of heavier hadrons (feed-down)

For J/ ψ (at CDF/LHC energies) the contributing mechanisms are:

Direct production

Prompt

Displaced

Feed-down from higher charmonium states: ~ 8% from $\psi(2S)$, ~25% from χ_c

B decay contribution is p_T dependent ~10% at p_T ~1.5GeV/c

Feed down and J/ψ from B, if not properly taken into account, may affect physics conclusions

Feed Down

30%

Direct

60%

ALICE and ATLAS J/ψ

Statistical and systematic uncertainties have not been propagated for ATLAS

 $J/\psi~R_{_{CP}}$ larger for ALICE than for ATLAS in the most central collisions... ... But different rapidity and $p_{_{T}}$ coverage

ψ(2S)/ψ

CMS: high $p_T J/\psi$

$J/\psi R_{AA}$ vs rapidity

toglie

$\psi(2S)$ in Pb-Pb

Study of other charmonium resonances can help constraining theoretical models

 ψ (2S) much less bound than J/ ψ

Results from the SPS showed a suppression larger than the J/ψ one

 $\psi(2S)$ studied by both CMS and ALICE, different kinematics

$\psi(2S)$ in Pb-Pb

The $\psi(2S)$ yield is compared to the J/ ψ one in Pb-Pb and in pp

Nucl.Phys.A 19 (2013), pp. 595-598 CMS PAS HIN-12-007 At SPS, the $\psi(2S)/J/\psi$ suppression increased with centrality

Overall interpretation is challenging

ALICE excludes a large enhancement

Difference trend in ALICE and CMS: large statistics and systematic errors prevent a firm conclusion on the $\psi(2S)$ enhancement or suppression versus centrality

Excited quarkonia states in p-A

Excited states suppressed relative to ground states

Shadowing and/or coherent energy loss don't explain the stronger $\psi(2S)$ suppression. Hot medium effects?

p-Pb vs pp: suppression increases with increase of charged particle multiplicity

r(3S)/r(1S)

HP2013

Benhabib,

Comparison Υ and J/ ψ

Similar R_{AA} for low p_T inclusive J/ ψ and $\Upsilon(1S)$

Sequential suppression observed for prompt J/ ψ and $\Upsilon(nS)$ at high p_T

interplay of the competing mechanisms for J/ψ and Υ can be different and dependent on kinematics!

$\Upsilon(1S)$ measurements in p-A

ц, p-Pb \sqrt{s_NN} = 5.02 TeV Hint for $\Upsilon(1S) R_{pPb}$ suppression at forward rapidity. Smaller effect at backward y R_{pPb} comparable for J/ ψ and $\Upsilon(1S)$ 0.8 0.6 Inclusive J/ψ→μ⁺μ⁻, p_>0 (arXiv:1308.6726 Inclusive Υ(1S)→µ^{*}µ['], p_x>0 (preliminary) H_{pPb} p-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ ELoss with q_=0.075 GeV²/fm (Arleo et al., arXiv:1212.0434) Inclusive $J/\psi \rightarrow \mu^+\mu^-$, $p_->0$ (arXiv:1308.6726) Inclusive $\Upsilon(1S) \rightarrow \mu^+\mu^-, p_->0$ (preliminary) PRELIMINA -2 -1 0 1 2 0.8 eⁿ p-Pb $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ Inclusive J/ψ→μ⁺μ΄, p_τ>0 (arXiv:1308.6726) 0.6 Inclusive Υ(1S)→μ⁺μ⁻, ρ_>0 (preliminary) EPS09 at LO: Ferreiro et al. 0.4 Shadowing: 1(1S): Eur. Phys. J. C (2013) 73:2427 0.2 Shadowing: J/w: arXiv:1305.4569 0.8 -2 -1 0 1 2 3 0.6 EPS09 shadowing models, CGC and 0.4 coherent energy loss in fair agreement CGC (Fujii et al, arXiv:1304.2221) 0.2 r(1S) with $\Upsilon(1S) R_{pA}$ result 2.51.5

У_{стs}

У_{стя}

$\Upsilon(2S)$ & $\Upsilon(3S)$ measurements in p-A

L. Benhabib, HP2013

Ratio forward to backward yields: R_{FB}

 $R_{\rm FB}$: free from uncertainties on the pp reference

$$R_{_{FB}}=rac{Y_{_{J/\psi}}^{Forward}}{Y_{_{J/\psi}}^{Backward}}$$

The $R_{\rm FB}$ ratio shows a rather flat y dependence and a $p_{\rm T}$ dependence with stronger forward to backward suppression at low $p_{\rm T}$

Less stringent comparison to theory wrt R_{pA} : however theoretical predictions including energy loss show strong nuclear effects at low p_{T_r} in fair agreement with the data

J/ψ vs open HF v₂

CMS HIN-2012-001

 \Box Similar values at very high p_T (uncertainties!) for all particles