

pA Physics at LHCb and HERA-B

Michael Schmelling – MPI for Nuclear Physics

Outline

- Introduction
- The LHCb Experiment
- The HERA-B Experiment
- Summary

Ecole de Physique des Houches 12-17 janvier 2014

- common features of LHCb and HERA-B
 - single-arm forward spectrometer at a hadron machine
 - high-rate experiments in hadronic environment
 - designed to do heavy flavour physics
 - CP-violation
 - → rare decays
 - able to do also electroweak measurements and QCD studies
 - ➔ access to different types of hadron-hadron interactions
 - ➔ different kinematic regimes
 - → study of exclusive and diffractive processes
 - ➔ particle production in different types of hadronic interactions

• highest $\sqrt{s_{NN}}$ of lab-experiments with matter-matter collisions!

→ physics reach

Kitch Configuration spaces

 \rightarrow the "x-Q²"-planes of hadronic interactions

Collisions partners: $A_{\text{beam}} \leq A_{\text{target}}$ – "beam" defines positive rapidity kinematically allowed range for final state particles

🚟 🚛 2. The LHCb Experiment

year	int.luminosity	E[TeV]
2009	6.8 μb^{-1}	0.9
2010	$0.3 {\rm nb}^{-1}$	0.9
2010	37 pb^{-1}	7
2011	$0.1 {\rm pb}^{-1}$	2.76
2011	1 fb^{-1}	7
2012	$2 fb^{-1}$	8
2013	$1.3 {\rm nb}^{-1}$	5 (pA)
2013	$0.6 {\rm nb}^{-1}$	5 (Ap)
2013	3 pb ⁻¹	2.76

- **DAQ efficiency** \approx 95%
- Instantaneous luminosity up to $L = 4 \times 10^{32} \text{cm}^{-2} \text{s}^{-1}$
 - → twice design value at double the nominal bunch spacing
 - ➔ luminosity leveling for LHCb by beam steering
- \blacksquare a total of about 2×10^{14} pp-collisions scrutinized

Kinematic coverage of LHCb

→ particle flux in minimum-bias pp-interactions at $\sqrt{s} = 8$ TeV

examples illustrating the physics potential \rightarrow

🚟 ቭ Production of light flavors

 \rightarrow particle production ratios as a function of y and p_T

antiparticle/particle ratios and ratios of different particle species

$$\frac{\pi^-}{\pi^+}, \ \frac{K^-}{K^+}, \ \frac{\bar{\Lambda}}{\Lambda} \qquad \text{and} \qquad \frac{p+\bar{p}}{\pi^++\pi^-}, \ \frac{K^++K^-}{\pi^++\pi^-}, \ \frac{\bar{\Lambda}}{K_{\text{S}}^0}$$

many systematic uncertainties cancel

Iots of information about the hadronization process, for example:

- ➔ baryon suppression from baryon/meson ratios
- strangeness suppression from kaon/pion ratios
- baryon number transport from antibaryon/baryon ratios

experimental aspects:

- > results based on 0.3 nb⁻¹ at $\sqrt{s} = 0.9$ TeV and 1.8 nb⁻¹ at $\sqrt{s} = 7$ TeV
- \succ PID efficiencies from $K^0_S \to \pi^+\pi^-$, $\Lambda \to p\pi^-$, $\bar{\Lambda} \to \bar{p}\pi^+$ and $\phi \to K^+K^-$
- > dominant uncertainties from PID due to limited size of calibration sample

👯 🛺 Antiparticle/particle ratios

- → charge ratio drops towards larger rapidities (proton beam)
- → effect more pronounced at higher p_T
- → general behaviour reproduced by PYTHIA tunes

👯 🛺 Ratios between particle species

- strangeness suppression very similar to baryon suppression
- \rightarrow less suppression at larger p_T
- → data best described by LHCb-tune of PYTHIA

Htele Production of strange baryons

- simulation overestimates baryon suppression in fragmentation
- ➔ rapidity dependence (baryon number transport) not described

👯 🚑 Baryon number transport

→ V⁰ particle ratios as a function of rapidity loss

scaling behavior for baryon number transport and baryon suppression
 no dependence on center-of-mass energy within experimental errors
 weak dependence of fragmentation (Λ̄/K_S⁰) as a function of rapidity loss
 drop in Λ̄/Λ for Δy → 0 dominated by baryon number transport

→ exploit the capability of LHC to store also heavy ions

→ additional extremely rich physics program, e.g.

- study of particle production
 - ➔ light flavors, strangeness, charm
- study of cold nuclear effects
 - ➔ needed for the interpretation of QGP signatures in heavy-ion collisions
 - → compare J/ψ production in pA and pp
 - → differentiate between prompt J/ψ and J/ψ from b as a possible handle to disentangle shadowing and energy loss effects

👯 🕌 Strangeness & open charm in pPb collisions 🚸

→ exploratory analysis of the pPb pilot run data

- \square integrated luminosity $L_{\rm int} \sim 1 \, \mu {\rm b}^{-1}$
- look at $K_S^0, \Lambda, \overline{\Lambda}, \phi, D^0$ -production
- $\blacksquare\,$ kinematic range $2.5 < y_{\rm CM} < 4.5$ and $p_T > 0.2\,{\rm GeV}/c$
- **Compare pPb collisions to minimum bias pp interactions at** $\sqrt{s} = 8 \text{ TeV}$

determine: $R(X) = \frac{N(X)/\text{pPb interaction}}{N(X)/\text{pp interaction}}$

- note: at present only statistical errors, no correction for ...
 - → spurious- or multiply reconstructed tracks
 - tracks from decays and secondary interactions
 - tracking efficiencies
 - ➔ different kinematics in lab-system
 - ➔ different nucleon-nucleon center-of-mass energies
- **E** expect the corrections to increase R(X) by O(7%)

 $R(\phi) = 2.163 \pm 0.071_{
m stat}$

(O)

-HCb-CONF-2012-034

Kick 🏹 Study of cold nuclear effects

measurement of the nuclear modification factor

$$R_{pA}(y) = rac{1}{A} \cdot rac{d{\sigma}_{pA}/dy}{d{\sigma}_{pp}/dy}$$

positive rapidity in direction of the proton

exploit asymmetric layout of LHCb to measure forward and backward

results from 1.6 nb^{-1} pPb-data recorded in 2013 \rightarrow

👯 🏹 Separating prompt & delayed J/ψ-decays 🚸

lacksim simultaneous fit of mass and pseudo-proper-time $t_z = (z_{J/\psi} - z_{PV}) \cdot M_{J/\psi}/p_z$

arXiv:1308.6729

Httl: Single differential cross-sections

\diamond center-of-mass energy $\sqrt{s}=5\,{ m TeV}$, transverse momentum $0 < p_T < 14\,{ m GeV}/c$

🚟 🚰 Results: nuclear modification factors

\rightarrow common range of fwd- and bwd acceptance: 2.5 < |y| < 4.0

results require interpolation of pp cross-section to √s = 5 TeV
 R_{pPb} ≠ 1: the nucleus is not a loose collection of independent nucleons
 B-mesons less affected than prompt J/ψ: smaller systems less affected
 energy loss and shadowing are about equally important
 J/ψ data agree with "energy loss + NLO shadowing"

SMOG: System for Measuring Overlap with Gas

→ injection of Ne-gas into VELO

Kick 🚑 Fixed target strangeness production

→ proton-Neon collisions

- $\Box \sqrt{s_{NN}} = 87 \,\text{GeV}$, boost to center-of-mass $\Delta y \approx 4.5$
- LHCb: backward direction in the nucleon-nucleon center-of-mass

-HCb-CONF-2012-034

→ a first look at PbNe collisions

40 min data taking with PbNe interactions
 plots based on 1/4 of available statistics

👯 🚚 3. The HERA-B Experiment

- fixed target experiment at the HERA proton ring
- C, (Al,) Ti, W target wires in the beam halo
- forward spectrometer layout similar to LHCb, except
 - only one RICH detector behind the magnet
 - → ECAL system with PS/SPD detector
 - ➔ no HCAL

- angular coverage 10 220 mrad
 - ➔ pseudorapidity very similar to range covered by LHCb

$$\eta = -\ln an rac{ heta}{2} \sim [2.2 - 5.2] \sim 3.7 \pm 1.5$$

 \blacksquare energy of the proton beam E = 920 GeV

→ nucleon-nucleon center-of-mass energy

$$\sqrt{s_{NN}}=\sqrt{2m_NE}pprox$$
 42 GeV

➔ boost of center-of-mass system

$$\gamma = rac{E}{M} pprox rac{920}{42} pprox 22$$

→ rapidity of center-of-mass system

$$y = rac{1}{2} \ln rac{E+p}{E-p} = rac{1}{2} \ln rac{(E+p)^2}{(E+p)(E-p)} \approx \ln rac{2E}{M} \approx \ln rac{2 \cdot 920}{42} \approx 3.8$$

■ HERA-B was a central detector ! ■ study of *pA* collisions at $\sqrt{s_{NN}} = 42$ GeV

🚻 🛺 The HERA-B physics programme

→ topics covered

- measurement of V⁰ production cross-sections
- \blacksquare K^{*0} and ϕ -meson production
- \blacksquare measurement of $b \overline{b}$ production cross-section
- Charm, beauty and charmonium production
- **D** nuclear effects in J/ψ production
- $\blacksquare J/\psi$ and Λ polarization measurements
- lacksquare searches for pentaquarks and for the FCNC decay $D^0 o \mu^+ \mu^-$

→ data samples for the final analyses

- C, Ti and W targets
- \square 2.0 \times 10⁸ minimum bias events
- \blacksquare 1.4 \times 10⁸ lepton triggered events

Http://www.weightedicale.com/w

EPJC61(2009)207

\rightarrow based on 2×10^8 minimum bias events

→ A-dependence of visible V⁰ cross-sections and, as an example, V⁰ cross-sections vs p²_T on Ti for -0.12 < x_F < -0.02 compared to a heuristic parameterization (dark), Pythia (light) and EPOS (dashed) (subsequent curves are scaled)

pA Physics at LHCb and HERA-B - The HERA-B Experiment

→ A-dependence

EPJC50(2007)315

M. Schmelling, January 15, 2014 27

👯 🕌 Measurement of the bb cross-section

ightarrow analysis of detached J/ψ decays

- clean finite-lifetime signal downstream of primary vertex
- Iow statistics measurement
- \blacksquare best cross-section measurement at $\sqrt{s} = 42 \,\text{GeV}$

minimum bias event sample with 3 target materials

EPJC52(2007)531

pA Physics at LHCb and HERA-B - The HERA-B Experiment

 D^0

 75.9 ± 10.9

 99.0 ± 11.9

 66.1 ± 9.6

 92.3 ± 11.7

 17.4 ± 5.7

 D_{ι}^+

 11.4 ± 4.0

 $4.9 {\pm} 2.6$

 6.7 ± 2.8

 4.2 ± 2.2

 6.7 ± 3.0

 0.4 ± 1.0

 D^+

 130.5 ± 14.7 54.5 ± 9.3

 75.8 ± 10.5

 72.4 ± 10.6

 $14.9 {\pm} 5.0$

 D^{*+}

 61.3 ± 13.0

 21.0 ± 6.6

 40.6 ± 8.3

 26.6 ± 6.4

 24.8 ± 7.5

 9.6 ± 4.0

 43.1 ± 7.7

→ very competitive measurements . . .

http://www.ary

- HERA-B was the highest energy proton-nucleus experiment before LHC
 - → large data samples of $O(10^8)$ events are available
 - ➔ backward-central region covered by tracking and PID
 - ➔ published results of strangeness, charm and beauty production
 - → multiplicities and inclusive cross-section and particle ratios not yet done
- QCD studies at the highest energies: LHC
 - → currently 7 experiments to exploit the physics potential
- LHCb can be operated in fixed target and collider mode
 - ➔ different combinations of beam and target nuclei
 - → central detector in fixed target operation
 - mid-forward coverage in collider mode
 - many measurements already done
 - ➔ potential to do much more

current score by HERA-B and LHCb \rightarrow

- additional beam-target combinations from RHIC and ALICE/ATLAS/CMS
- fwd-coverage at lower s_{NN} by fixed target experiments at CERN & Fermilab
- more data about pp̄ from Spp̄S and Tevatron
- full phase space covered by cosmic ray experiments

pA Physics at LHCb and HERA-B - Summary