Re-weighting
V s.re-fitting (\& AFTER)

Pía Zurita

University of Santiago de Compostela AFTER@LHC 12-17 January 2014-Les Houches

Outline

Motivation

The re-weighting methods

Before AFTER

Summary

AFTER

Fitting implies ...
and it is ...

making many, many choices

Fitting implies ... and it is ...
methods to quickly assess the impact of new data on (n)PDFS

Bayesian re-weighting

W.T. Giele and S. Keller, Phys. Rev. D58 (I998) 094923.
R. D. Ball et al. [NNPDF Collaboration], Nucl. Phys. B 849 (201I) I I2 [Erratum-ibid. B 854 (2012) 926] [Erratum-ibid. B 855 (2012) 927].
R. D. Ball et al. [NNPDF Collaboration], Nucl. Phys. B 855 (2012) 608.
G.Watt and R. S. Thorne, JHEP (2012) 052.
N. Sato, J.F. Owens and H. Prosper, arXiv:I3IO.I089.
B.J.A.Watt, P. Motylinski and R.S.Thorne, arXiv: I3 I I.5703.
N. Armesto, J. Rojo, C.A. Salgado, and P. Z., JHEP I3II (20|3) 0 I5.

Hessian re-weighting
H. Paukkunen and C.A. Salgado, Phys. Rev. Lett. IIO, $2 \mid 2301$ (20I3).

For any observable

$$
\langle\mathcal{O}\rangle=\frac{1}{N_{\text {rep }}} \sum_{k=1}^{N_{\text {rep }}} \mathcal{O}\left[f_{k}\right]
$$

For any observable

$$
\langle\mathcal{O}\rangle=\frac{1}{N_{\text {rep }}} \sum_{k=1}^{N_{\text {rep }}} \mathcal{O}\left[f_{k}\right]
$$

\boldsymbol{n} new data points \Rightarrow

$$
\mathcal{P}_{\text {new }}(f)=\mathcal{N}_{\chi} \mathcal{P}(\chi \mid f) \mathcal{P}_{\text {old }}(f)
$$

For any observable

$$
\langle\mathcal{O}\rangle=\frac{1}{N_{\text {rep }}} \sum_{k=1}^{N_{\text {rep }}} \mathcal{O}\left[f_{k}\right]
$$

\boldsymbol{n} new data points \Rightarrow

$$
\begin{aligned}
& \mathcal{P}_{\text {new }}(f)=\mathcal{N}_{\chi} \mathcal{P}(\chi \mid f) \mathcal{P}_{\text {old }}(f) \\
\Rightarrow \quad & \langle\mathcal{O}\rangle_{\text {new }}=\frac{1}{N_{\text {rep }}} \sum_{k=1}^{N_{\text {rep }}} w_{k} \mathcal{O}\left[f_{k}\right]
\end{aligned}
$$

How to choose the likelihood?

$$
\mathcal{P}(\chi \mid f) \propto\left(\chi^{2}\right)^{\frac{1}{2}(n-1)} e^{-\frac{1}{2} \chi^{2}} \quad \text { NNPDF }
$$

$$
\mathcal{P}(\vec{y} \mid f) \propto e^{-\frac{1}{2} \chi^{2}(y, f)}
$$

Giele-Keller

NNPDF

$$
w_{k}=\frac{\left(\chi_{k}^{2} \frac{1}{2}(n-1) e^{-\chi_{k}^{2} / 2}\right.}{\frac{1}{N_{\text {rep }}} \sum_{k=1}^{\text {Nexete }}\left(X_{k}^{2}\right)^{\frac{1}{2}(n-1)} e^{-\lambda_{k}^{2} / 2}}
$$

Giele-Keller

$$
w_{k}=\frac{e^{-\sum_{k}^{2} / 2}}{\frac{1}{N_{\text {tep }}} \sum_{k=1}^{N_{\text {tep }}} e^{-\chi_{k}^{2} / 2}}
$$

$$
\chi_{k}^{2}\left(y, f_{k}\right)=\sum_{i, j=1}^{n}\left(y_{i}-y_{i}\left[f_{k}\right]\right) \sigma_{i j}^{-1}\left(y_{j}-y_{j}\left[f_{k}\right]\right)
$$

re-weighting
 \#
 new fit

re-weighting
 \#

new fit

To quantify the accuracy

$$
\begin{aligned}
N_{\text {eff }} & \equiv \exp \left\{\frac{1}{N_{\text {rep }}} \sum_{k=1}^{N_{\text {rep }}} w_{k} \log \left(N_{\text {rep }} / w_{k}\right)\right\} \\
& =N_{\text {rep }} \exp \left\{-\frac{1}{N_{\text {rep }}} \sum_{k=1}^{N_{\text {rep }}} w_{k} \log \left(w_{k}\right)\right\}
\end{aligned}
$$

$$
w h a t \text { if } N_{\text {eff }} \ll N_{\text {rep }} ?
$$

Too much new information, (theory still valid)

Incompatible new data (theory no longer applies)

$$
\text { what if } N_{\text {eff }} \ll N_{\text {rep }} ?
$$

Too much new information, (theory still valid)

Incompatible new data (theory no longer applies)

$$
\text { what if } N_{\text {eff }} \ll N_{\text {rep }} ?
$$

Too much new information, (theory still valid)

Incompatible new data (theory no longer applies)

$$
\text { what if } N_{\text {eff }} \ll N_{\text {rep }} ?
$$

Too much new information, (theory still valid)

Incompatible new data (theory no longer applies)

new
(n)PDF set

> and now we put this to test...

$$
f_{k}\left(x, Q^{2}\right)=f_{0}\left(x, Q^{2}\right)+\sum_{i}^{N_{\text {eig }}}\left(f_{i}^{ \pm}\left(x, Q^{2}\right)-f_{0}\left(x, Q^{2}\right)\right)\left|r_{k, i}\right|
$$

hessian eigenvectors
central value

Drell-Yan

MCFM + MSTW2008 + EPS09

J. M. Campbell and R. K. Ellis, Phys. Rev. D 62 (2000) 114012.
A. D. Martin, W. J. Stirling, R. S. Thorne and G. Watt, Eur. Phys. J. C 63 (2009) 189. K. J. Eskola, H. Paukkunen and C. A. Salgado, JHEP 0904 (2009) 065.

No pt cuts
$|\eta|<4$
8\% systematic uncertainty
$L_{\text {int }}=30 \mathrm{nb}^{-1}$
1000 MC replicas

Drell-Yan

No change in the valence

Modification of the sea

- Modification of the gluon

Hadro-production

Code for $\mathrm{PPb} \rightarrow \mathrm{h}+\mathrm{X}+\mathrm{MSTW} 2008+$ EPS09 + DSS
B. Jager, A. Schafer, M. Stratmann and W. Vogelsang, Phys. Rev. D67 (2003) 054005.
R. Sassot and M. Stratmann and P.Z., Phys. Rev. D82 (2010) 074011.
D. de Florian, R. Sassot and M. Stratmann, Phys. Rev. D76 (2007) 074033.

DGLAP \& CGC pseudo-data
J. L. Albacete, A. Dumitru, H. Fujii and Y. Nara, Nucl. Phys. A 897 (2013) 1.
5% systematic \& 7\% normalization uncertainties
$L_{\text {int }}=30 \mathrm{nb}^{-1}$
1000 MC replicas
two scenarios: $\eta=0 \& \eta=2$

DGLAP pseudo-data for $\eta=2$

EPS09 original

NNPDF re-weighted

5

G-K re-weighted
$<X^{2}>/ n$
1.82
1.08
0.95
$N_{\text {eff }}$
0.95
0.92
0.91

612
307

10
$\mathrm{p}_{\mathrm{T}}(\mathrm{GeV})$

No change in the valence
No change in the sea
Modification of the gluon, compatible with Drell-Yan behaviour
un-weighted

X
re-weighted

re-weighted

CGC pseudo-data for $\eta=2$

NNPDF re-weighted

G-K re-weighted

CGC psendo-data for $\eta=2$

CGC for $\eta=2$

Unfortunately, no, because

$\mathrm{n}=25$	$\mathrm{X}^{2} / \mathrm{n}$	$<\mathrm{X}^{2}>/ \mathrm{n}$	$\mathrm{N}_{\text {eff }}$
Before	36.43	38.62	-
NNPDF	1.85	1.85	
G-K	1.85	1.85	

CGC for $\eta=2$

Unfortunately, no, because

$\mathrm{n}=25$	$\mathrm{X}^{2} / \mathrm{n}$	$<\mathrm{X}^{2}>/ \mathrm{n}$	$\mathrm{N}_{\text {eff }}$
Before	36.43	38.62	-
NNPDF	1.85	1.85	I
G-K	1.85	1.85	\mathbf{I}

and the re-weighting methods are invalidated

What happens with the gluons?

gluons unconstrained (basically at any- x)
re-weighting methods are powerful tools: fittersindependent \& time saving
compatibility of the methods under study
hints of new phenomena

http://igfae.usc.es/hotlhc/index.php/ software

AFTER
prompt photon

deuteron target

Drell-Yan
hadro-production

Deuteron

included but not included in nuclear fits

relevant for isospin separation
effect not small if precision required
more data would be useful

Drell-Yan

LO $\quad \mathbf{d} \sigma_{\mathbf{D Y}}^{\mathrm{pA}} \propto \mathbf{e}_{\mathbf{u}}^{2}\left[\mathbf{u}\left(\mathrm{x}_{1}\right) \overline{\mathbf{u}}^{\mathbf{A}}\left(\mathrm{x}_{2}\right)+\overline{\mathbf{u}}\left(\mathrm{x}_{1}\right) \mathbf{u}^{\mathrm{A}}\left(\mathrm{x}_{2}\right)\right] \quad$ large positive y

$$
+e_{d}^{2}\left[d\left(x_{1}\right) \overline{\mathbf{d}}^{\mathbf{A}}\left(\mathrm{x}_{2}\right)+\overline{\mathbf{d}}\left(\mathrm{x}_{1}\right) \mathrm{d}^{\mathrm{A}}\left(\mathrm{x}_{2}\right)\right] \quad \text { large negative } \mathrm{y}
$$

high x suppression:

EMC effect
y
$\mathrm{x}_{1,2}=\sqrt{\mathrm{M}^{2} / \mathrm{s}} \mathrm{e}^{ \pm \mathrm{y}}$
shadowing sea quarks

- DSSZ
---- BPS 09
.... free proton PDF

Single-inclusive hadro-production

constraints on gluon density
only RHIC data, $\eta=0$
final state dependent
problem with FFs at LHC energies

