TMD gluon distributions and quarkonium production in unpolarized pp collisions

Cristian Pisano

European Research Council Established by the European Commission

Probing the Strong Interaction at A Fixed Target ExpeRiment with the LHC beams Ecole de Physique des Houches, France 12 - 17 January 2014

- $h_1^{\perp g}$: distribution of linearly polarized gluons inside an unpolarized hadron
- Azimuthal asymmetries for $Q\bar{Q}$, dijet production in ep collisions; $\gamma\gamma$ in pp collisions
- Modulation of the cross section for hadroproduction of Higgs and scalar quarkonia
- New: f_1^g (unpolarized gluon TMD) and $h_1^{\perp g}$ can be probed via $J/\psi(\Upsilon) + \gamma$ at LHC

Gluon distributions

- Experimental and theoretical investigations of gluons inside hadrons focussed so far on their momentum and helicity distributions:
 - g(x): unpolarized gluons with collinear momentum fraction x in unp. hadrons
 - $\Delta g(x)$: circularly polarized gluons with mom. fraction x in polarized hadrons
- Taking into account the transverse momentum p_T of the gluon:

 $(\Delta)g(x) \longrightarrow (\Delta)g(x, \boldsymbol{p}_T^2)$

and other transverse momentum dependent gluon pdfs (TMDs) can be nonzero M. Schlegel's talk

- In this framework, gluons do not have to be unpolarized, even if the parent hadron itself is unpolarized (different polarization mode compared to Δg)!
- Nontrivial property that has received much more attention in the quark sector
- Once $h_1^{\perp g}$ is known, polarized processes without polarized beams at our disposal

Gluon correlator

• The gluon correlator describes the hadron \rightarrow gluon transition

Gluon momentum $p = x P + p_T + p^- n$, with $n^2 = 0$ and $n \cdot P = 1$ transverse projector: $g_T^{\alpha\beta} \equiv g^{\alpha\beta} - P^{\alpha}n^{\beta} - n^{\alpha}P^{\beta}$

• It is parametrized in terms of TMDs. At "Leading Twist" and omitting gauge links:

$$\Phi_{g}^{\alpha\beta}(x,p_{T};P) \equiv \Gamma^{\alpha\beta} = \frac{-1}{2x} \left\{ g_{T}^{\alpha\beta} f_{1}^{g}(x,\boldsymbol{p}_{T}^{2}) - \left(\frac{p_{T}^{\alpha}p_{T}^{\beta}}{M_{h}^{2}} + g_{T}^{\alpha\beta} \frac{\boldsymbol{p}_{T}^{2}}{2M_{h}^{2}} \right) h_{1}^{\perp g}(x,\boldsymbol{p}_{T}^{2}) \right\}$$

• $f_1^g(x, p_T^2) \equiv g(x, p_T^2)$ is the usual unpolarized gluon distribution; $p_T^2 = -p_T^2$

- $h_1^{\perp g}(x, p_T^2)$ is the *T*-even distribution of linearly pol. gluons in an unp. hadron Mulders, Rodrigues, PRD 63 (2001) 094021
- $h_1^{\perp g}$ is a helicity-flip distribution, and a second rank tensor in p_T (p_T -even)
- $h_1^{\perp g}(x, p_T^2) \neq 0$ in the absence of ISI or FSI, but, as any TMD, it will receive contributions from ISI/FSI \longrightarrow it can be nonuniversal!

• Transverse momentum plane. $h_1^{\perp g}$ is taken to be a Gaussian

• The ellipsoid axis lengths are proportional to the probability of finding a gluon with a linear polarization in that direction

The function $h_1^{\perp g}$: phenomenology

So far no experimental studies of the function $h_1^{\perp g}$ have been performed

• Measurements of the $\cos 2\phi$ azimuthal asymmetries of heavy quark and jet pair production in e p collisions (EIC, LHeC) can probe the distribution of linearly polarized gluons inside unpolarized hadrons $h_1^{\perp g}$

$$\mathcal{A}_{2\phi} \sim \cos 2\phi \ h_1^{\perp g}$$

Boer, Brodsky, Mulders, CP, PRL 106 (2011) 132001 CP, Boer, Brodsky, Mulders, Buffing, JHEP 1310 (2013) 024

• Azimuthal asymmetries in $p p \rightarrow \gamma \gamma X$ (RHIC, LHC)

$$\begin{array}{lll} \mathcal{A}_{2\phi} & \sim & \cos 2\phi \; f_1^g \otimes h_1^{\perp \; g} \\ \mathcal{A}_{4\phi} & \sim & \cos 4\phi \; h_1^{\perp \; g} \otimes h_1^{\perp \; g} \\ & & \text{Qiu, Schlegel, Vogelsang, PRL 107 (2011) 062001} \end{array}$$

 Models suggest that h₁^{⊥g} may reach its maximally allowed size at small x Meissner, Metz, Goeke, PRD 76 (2007) 034002 Metz, Zhou, PRD 84 (2011) 051503 Dominguez, Qiu, Xiao, Yuan, PRD 85 (2012) 045003

 $h_1^{\perp g}$ in $pp \to HX$

- Higgs boson production happens mainly via $gg \rightarrow H$
- Pol. gluons affect the Higgs transverse momentum distribution at NNLO pQCD Catani, Grazzini, NPB 845 (2011) 297
- The nonperturbative distribution can be present at tree level and would contribute to Higgs production at low q_T

Boer, den Dunnen, CP, Schlegel, Vogelsang, PRL 108 (2012) 032002

The LHC can be viewed also as a *polarized* gluon collider!

• The angular independent cross section has the form:

$$\frac{1}{\sigma} \frac{d\sigma}{dq_T^2} \propto 1 \pm R(q_T) \qquad R(q_T) = \frac{\mathcal{C}[w_H h_1^{\perp g} h_1^{\perp g}]}{\mathcal{C}[f_1^g f_1^g]} \qquad (+\text{ for } H^0; -\text{ for } A^0)$$

- R = 0 for a spin 2 particle with the same couplings of a Kaluza-Klein graviton Ellis, Hwang, JHEP 09 (2012) 071 Boer, den Dunnen, CP, Schlegel, PRL 111 (2013) 032002
- Gaussian model for f_1^g and $h_1^{\perp g}$; $h_1^{\perp g}$ is close to its bound for large p_T :

On-shell Higgs boson

Characteristic modulation; overall sign determined by the parity of the Higgs

- In reality the Higgs will decay. Background processes may dilute the modulation
- $H \rightarrow \gamma \gamma$ has been studied so far Boer, den Dunnen, CP, Schlegel, Vogelsang, PRL 108 (2012) 032002
- Linearly polarized gluons contribute also to $gg \rightarrow \gamma\gamma$ without Higgs Nadolsky, Balazs, Berger, Yuan, PRD 76 (2007) 013008 Qiu, Schlegel, Vogelsang, PRL 107 (2011) 062001

$gg \to \gamma\gamma$

$$\int d\phi \, \frac{d\sigma}{d^4 q \, d\Omega} \propto 1 + \frac{F_2}{F_1} \left(Q, \theta\right) R(q_T)$$

 $d\Omega = d\cos\theta d\phi$ solid angle element for each photon in the Collins-Soper frame q: momentum of the photon pair; $Q = \sqrt{q^2}$

- Discernable only in a narrow region around the Higgs mass (here $M_H = 120 \text{ GeV}$)
- Other decay channels are under investigation

Boer, den Dunnen, CP, Schlegel, Vogelsang, in preparation

- C = + quarkonia ($\eta_{c,b}, \chi_{c,b}$) produced in pp collisions: reliable gluon probes Brodsky, Fleuret, Hadjidakis, Lansberg, Phys.Rept. 522 (2013) 239
- $h(P_A)+h(P_B) \rightarrow Q\bar{Q}[^{2S+1}L_J](q)+X$ is dominated by the partonic reaction $g(p_a) + g(p_b) \rightarrow Q\bar{Q}[^{2S+1}L_J](q)$

with the $Q\bar{Q}$ pair in a bound state described by a nonrelativistic wave function

- Hadrons produced in $2 \rightarrow 1$ processes have small transverse momentum $q_T = p_{aT} + p_{bT}$ are mostly lost down the beam pipe at colliders like the LHC
- They could be detected by forward detectors at LHCb Barsuk, He, Kou, Viaud, PRD 86 (2012) 034011

or in fixed target experiments, like the proposed AFTER@LHC Brodsky, Fleuret, Hadjidakis, Lansberg, Phys.Rept. 522 (2013) 239 - The process is studied in the TMD factorization approach, in combination with NRQCD based color-singlet model, for $q_T^2 \ll 4 M_Q^2$

TMD master formula:

$$d\sigma = \frac{1}{2s} \frac{d^{3}q}{(2\pi)^{3} 2q^{0}} \int dx_{a} dx_{b} d^{2} \boldsymbol{p}_{aT} d^{2} \boldsymbol{p}_{bT} (2\pi)^{4} \delta^{4}(p_{a}+p_{b}-q) \\ \times \operatorname{Tr} \left\{ \Phi_{g}(x_{a},\boldsymbol{p}_{aT}) \Phi_{g}(x_{b},\boldsymbol{p}_{bT}) \overline{\sum_{\text{colors}}} \left| \mathcal{A} \left(g \, g \to Q \bar{Q} [^{2S+1} L_{J}] \right) \right|^{2} \right\}$$

• At LO pQCD described by

• At low q_T , color-octet contributions are suppressed

Bodwin, Braaten, Lee, PRD 72 (2005) 014004 Bodwin, Braaten, Lepage, PRD 51 (1995) 1125 Gaussian model for the TMDs

 $h_1^{\perp g}$ is constrained by a model-independent positivity bound

$$\frac{\boldsymbol{p}_{T}^{2}}{2M_{h}^{2}} \left| h_{1}^{\perp g}(x, \boldsymbol{p}_{T}^{2}) \right| \leq f_{1}^{g}(x, \boldsymbol{p}_{T}^{2})$$

Standard approach: TMDs have a Gaussian dependence on transverse momentum

The width $\langle p_T^2 \rangle$ will depend on the energy scale, set by the quarkonium mass MAybat, Rogers, PRD 83 (2011) 114042 • Similarly to the Higgs case:

$$egin{array}{ll} rac{1}{\sigma(\eta_Q)} \, rac{d\sigma(\eta_Q)}{doldsymbol{q}_T^2} & \propto & 1-R(oldsymbol{q}_T^2) & ext{[pseudoscalar]} \ \ rac{1}{\sigma(\chi_Q)} \, rac{d\sigma(\chi_{Q0})}{doldsymbol{q}_T^2} & \propto & 1+R(oldsymbol{q}_T^2) & ext{[scalar]} \end{array}$$

The effects of $h_1^{\perp g}$ on higher angular momentum bound states are suppressed

Boer, CP, PRD 86 (2012) 094007

Different Gaussian input for $h_1^{\perp \, g}$

. - p.14/22

- h[⊥]₁ g receives contributions from ISI/FSI (gauge links) which make it process dependent and can even break factorization
- It is possibile to define five independent h₁^{⊥ g} functions with specific color structures. Depending on the process, one extracts different combinations of them Buffing, Mukherjee, Mulders, PRD 88 (2013) 054027
- In $ep \to e'Q\bar{Q}X$ and in all the processes with a colorless final state, $pp \to \gamma\gamma X$, $pp \to H/\eta_c/\chi_{c0}/...X$, only two $h_1^{\perp g}$ functions appear (in the same combination)
- In $pp \to Q\bar{Q}X$ and $pp \to \text{jet jet } X$ problems with factorization breaking terms.

Even if we assume TMD factorization, more functions appear due to the more complicated structure in color space of the diagram(s) involved

CP, Boer, Brodsky, Buffing, Mulders, JHEP 1310 (2013) 024

$\underline{pp \to \mathcal{Q} + \gamma + X}$

- Quarkonium $Q \equiv Q\bar{Q}[{}^{3}S_{1}]$ and isolated γ produced almost back-to-back den Dunnen, Lansberg, CP, Schlegel, in preparation
- Accessible at the LHC : only the transverse momentum of the $Q + \gamma$ pair needs to be small, not the individual ones
- Study of TMD evolution by tuning the invariant mass of $Q + \gamma$ (evolution scale)
- Color octet (CO) contributions to $Q + \gamma$ likely smaller than for inclusive QKim, Lee, Song, PRD 55 (1997) 5429 Li, Wang, PLB 672 (2009) 51 Lansberg, PLB 679 (2009) 340
- CO further suppressed w.r.t. CS contributions when Q and γ are back-to-back Mathews, Sridhar, Basu, PRD 60 (1999) 014009

Calculation of the cross section

• TMD factorization approach, in combination with the color-singlet model, for $q_T^2 \ll Q^2$, with $q_T = K_{QT} + K_{\gamma T}$, $Q^2 \equiv q^2 = (K_{QT} + K_{\gamma T})^2$

TMD master formula:

$$d\sigma = \frac{1}{2s} \frac{d^{3} \mathbf{K}_{Q}}{(2\pi)^{3} 2K_{Q}^{0}} \frac{d^{3} \mathbf{K}_{\gamma}}{(2\pi)^{3} 2K_{\gamma}^{0}} \int dx_{a} dx_{b} d^{2} \mathbf{p}_{aT} d^{2} \mathbf{p}_{bT} (2\pi)^{4} \delta^{4}(p_{a}+p_{b}-q) \\ \times \operatorname{Tr} \left\{ \Phi_{g}(x_{a}, \mathbf{p}_{aT}) \Phi_{g}(x_{b}, \mathbf{p}_{bT}) \overline{\sum_{\text{colors}}} \left| \mathcal{A}\left(g \, g \to Q \bar{Q} [^{3} S_{1}]\right) \right|^{2} \right\}$$

Feynman diagrams at LO pQCD:

 $\frac{\mathrm{d}\sigma}{\mathrm{d}Q\mathrm{d}Y\mathrm{d}^2q_T\mathrm{d}\Omega} \propto Af_1^g \otimes f_1^g + Bf_1^g \otimes h_1^{\perp g}\cos(2\phi_{CS}) + Ch_1^{\perp g} \otimes h_1^{\perp g}\cos(4\phi_{CS})$

- valid up to corrections $\mathcal{O}\left(q_T^2/Q^2\right)$
- Y: rapidity of the $Q + \gamma$ pair, along the beams in the hadronic c.m. frame
- $d\Omega = d\cos\theta_{CS} d\phi_{CS}$: solid angle element for Q and γ in the Collins-Soper frame

The three contributions can be disentangled by defining the transverse moments

$$S_{q_T}^{(n)} = \pi \left(\frac{\mathrm{d}\sigma}{\mathrm{d}Q \,\mathrm{d}Y \,\mathrm{d}\cos\theta_{CS}} \right)^{-1} \int \mathrm{d}\phi_{CS} \,\cos(n\phi_{CS}) \,\frac{\mathrm{d}\sigma}{\mathrm{d}Q \,\mathrm{d}Y \,\mathrm{d}^2 \boldsymbol{q}_T \mathrm{d}\Omega}$$
$$(n = 0, 2, 4)$$

$$\begin{array}{lll} \mathcal{S}_{q_T}^{(0)} & \Longrightarrow & f_1^g \otimes f_1^g \\ \mathcal{S}_{q_T}^{(2)} & \Longrightarrow & f_1^g \otimes h_1^{\perp g} \\ \mathcal{S}_{q_T}^{(4)} & \Longrightarrow & h_1^{\perp g} \otimes h_1^{\perp g} \end{array}$$

• Process dominated by gg fusion

- CS yield is clearly dominant for the Υ , above the CO one for J/ψ at low Q
- Further suppression of CO contributions by isolating Q (not needed for Υ)
 Kraan, AIP Conf. Proc. 1038 (2008) 45
 Kikola, NP Proc. Suppl. 214 (2011) 177

Models for f_1^g : assumed to be the same as for Unintegrated Gluon Distributions

- Set B: B0 solution to CCFM equation with input based on HERA data Jung et al., EPJC 70 (2010) 1237
- KMR: Formalism embodies both DGLAP and BFKL evolution equations Kimber, Martin, Ryskin, PRD 63 (2010) 114027
- CGC: Color Glass Condensate Model Dominguez, Qiu, Xiao, Yuan, PRD 85 (2012) 045003 Metz, Zhou, PRD 84 (2011) 051503

$$\mathcal{S}_{q_{T}}^{(2,4)}$$
 : Model predictions for $\Upsilon+\gamma$ production at $\sqrt{s}=8$ TeV

 $Q = 20 \text{ GeV}, \qquad Y = 0, \qquad \theta_{CS} = \pi/2$

 $h_1^{\perp g}$: predictions only in the CGM: in the other models saturated to its upper bound

 $S_{q_T}^{(2,4)}$ smaller than $S_{q_T}^{(0)}$: can be integrated up to $q_T = 10 \text{ GeV}$ $1.2\% (\text{KMR}) < |\int dq_T^2 S_{q_T}^{(2)}| < 2.9\% (\text{Gauss})$ $0.2\% (\text{CGC}) < \int dq_T^2 S_{q_T}^{(4)} = 0.2\% (\text{Gauss})$

Possible determination of the shape of f_1^g and verification of a non-zero $h_1^{\perp g}$

Conclusions

- h₁^{⊥ g} leads to a modulation of the angular independent transverse momentum distribution of scalar (χ_{c0}, χ_{b0}) and pseudoscalar (η_c, η_b) quarkonia: the sign will depend on the parity of the particle
- Polarized beams are not required, no angular analysis needs to be performed; experimental opportunities offered by LHCb and the proposed AFTER@LHC
- First determination of $h_1^{\perp g}$ and f_1^g could come from $J/\psi(\Upsilon) + \gamma$ production at the running experiments at the LHC. Similar results for $J/\psi(\Upsilon) + Z$, but higher luminosity is required den Dunnen, Lansberg, CP, Schlegel, in preparation
- Together with a similar study in the Higgs sector, quarkonium production can be used to extract gluon TMDs and to study their process and scale dependences