A Fixed-Target ExpeRiment (AFTER) using the LHC beams

Cynthia Hadjidakis

Les Houches, January 17th 2014

- Physics opportunities with a fixed target experiments using the LHC proton and ion beams
- Expected luminosities
- Quarkonium case: yields and first studies

Physics opportunities of A Fixed-Target ExpeRiment (AFTER) @LHC

Idea: use LHC beams on fixed target

- 7 TeV proton beam ($\sqrt{s} \sim 115$ GeV)
 - p+H, p+A
- 2.76 TeV Pb beam ($\sqrt{s_{NN}} \sim 72$ GeV)
 - Pb+A, Pb+H

• High boost and luminosity give access to the QCD at large *x* = [0.3-1]

- Nucleon partonic structure
- Spin physics
- Nuclear shadowing
- Quark Gluon Plasma
- W/Z production near threshold
- Other ?

Multi-purpose experiment

Physics Opportunities of a Fixed-Target Experiment using the LHC Beams

S.J. Brodsky¹, F. Fleuret², C. Hadjidakis³, J.P. Lansberg³

¹SLAC National Accelerator Laboratory, Theoretical Physics, Stanford University, Mento Park, California 94025, USA ²Laboratoire Leprince Ringuez, Ecole polytechnique, CNRSIN2P3, 91128 Palaiseau, France ³IPNO, Université Paris-Sud, CNRSIN2P3, 91406 Orsay, France

Physics Reports 522 (2013) 239

Abstract

[I]

[hep-ph]

arXiv:1202.6585v1

We outline the many physics opportunities offered by a multi-purpose fixed-target experiment using the proton and lead-ion beams of the LHC extracted by a bent crystal. In a proton run with the LHC 7-TeV beam, one can analyze *pp*, *pd* and *pA* collisions at center-of-mass energy $\sqrt{s_{WN}} \approx 115$ GeV and even higher using the Fermi motion of the nucleons in a nuclear target. In a lead run with a 2.76 TeV-per-nucleon beam, $\sqrt{s_{WN}} \approx 115$ GeV and even higher using the Fermi motion of the nucleons in a nuclear target. In a lead run with a 2.76 TeV-per-nucleon beam, $\sqrt{s_{WN}} \approx 10^{5}$ GeV. Bent crystals can be used to extract about 5×10^{8} protons/sec; the integrated luminosity over a year reaches 0.5 fb⁻¹ on a typical 1 cm-long target without nuclear species limitation. We emphasize that such an extraction mode does not alter the performance of the collider experiments at the LHC. By instrumenting the target-rapidity region, gluon and heavy-quark distributions of the proton and the neutron can be accessed at large *x* and even at *x* larger than unity in the nuclear case. Single diffractive physics and, for the first time, the large negative- x_{y} domain can be accessed. The nuclear target-species versatility provides a unique opportunity to study nuclear matter versus the features of the hot and dense matter formed in heavy-ion collisions, including the formation of the quark-gluon plasma, which can be studied in *PbA* collisions over the full range of target-rapidity domain with a large variety of nuclei. The polarization of hydrogen and nuclear targets allows an ambitious spin program, including measurements of the QCD lensing effects which underlife the Sivers single-spin asymmetry, the study of transversity distributions and possibly of polarized parton distributions. We also emphasize the potential offered by *pA* ultra-peripheral collisions where the nucleus target *A* is used as a coherent photon source, mimicking photoproduction processes in *ep* collisions. Finally, we note that *W* and

Keywords: LHC beam, fixed-target experiment

Contents				52	Gluon nPDF	8		
-	/IIIIC II	3			3.4	5.2.1 Isolated photons and photon ist	0	
1 Introduction		2		complations	8			
						5.2.2 Precision quarkonium and heavy-	~	
2	2 Key numbers and features			3		flavour studies	8	
				5.3	Color filtering, energy loss, Sudakov sup-			
3	Nucleon partonic structure			3		pression and hadron break-up in the nucleus	8	
	3.1 Drell-Yan		3		pression and many orear up in the nucleus			
	3.2	Gluons in the proton at 1	arge x	4	6 Dec	confinement in heavy ion collisions	9	
		3.2.1 Quarkonia		4	6.1	Quarkonium studies	9	
		3.2.2 Jets		5	6.2	Jet quenching	10	
		3.2.3 Direct/isolated p	hotons	5	6.3	Direct photon	10	
	3.3	Gluons in the deuteron a	nd in the neutron .	5	6.4	Deconfinement and the target rest frame	10	
	3.4	Charm and bottom in the	proton	5	6.5	Nuclear-matter baseline	10	
		3.4.1 Open-charm pro	duction	6				
		3.4.2 $J/\psi + D$ meson j	production	6	7 W a	and Z boson production in pp, pd and pA col-		
		3.4.3 Heavy-quark plu	is photon	6	lisie	ons	10	
					7.1	First measurements in pA	10	
4	Spir	physics		6	7.2	W/Z production in pp and pd	11	
	4.1	Transverse SSA and DY		6				
	4.2 Quarkonium and heavy-quark transverse SSA		7	8 Exclusive, semi-exclusive and backward reac				
	4.3	Transverse SSA and pho	ton	7	tion	15	11	
	4.4	Spin Asymmetries with	a final state polar-		8.1	Ultra-peripheral collisions	11	
		ization		7	8.2	Hard diffractive reactions	11	
					8.3	Heavy-hadron (diffractive) production at		
5	Nuclear matter			7		$x_F \rightarrow -1$	11	
	5.1	Quark nPDF: Drell-Yan	in pA and Pbp	8	8.4	Very backward physics	12	
De		amined to ArVin: STAC DUR	4879			March 1	2012	

INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY

Proton structure: our current knowledge

Deep inelastic scattering (ep), Drell-Yan/Jet/Isolated photon/W/Z in hadronic collisions (pp): fixedtarget or collider

High-*x* pdfs: few data available (DIS) and mostly sensitive to valence-quarks

Sea and gluon pdfs at large xextracted from DGLAP evolution equation \rightarrow large uncertainty also for large scale

Proton structure: our current knowledge

Gluon distribution in the nucleon at large x

Gluon distribution function in the proton: very large uncertainty at large *x* also at large Q

Gluon distribution in the nucleon at large x

Gluon distribution function in the proton: very large uncertainty at large *x* also at large Q

Unknown for the neutron

Gluon distribution in the nucleon at large x

Gluon distribution function in the proton: very large uncertainty at large *x* also at large Q

Unknown for the neutron

- Experimental probes @ AFTER
- Quarkonia
- Isolated photons
- High p_T jets (p_T > 20 GeV/c)
 → to access target x_g = 0.3 1 (>1 Fermi motion in nucleus)
- Target versatility
- Hydrogen
- Deuteron (neutron)

Heavy-quark distribution at large x

Intrinsic charm motivated by non perturbative models of hadron structure

All different charm pdfs (DGLAP or intrinsic charm) in agreement with DIS data

Heavy-quark distribution at large x

Intrinsic charm motivated by non perturbative models of hadron structure

All different charm pdfs (DGLAP or intrinsic charm) in agreement with DIS data

- Experimental probes @ AFTER
- Open charm (D meson or displacedvertex lepton)
- Open beauty

Boer-Mulders effect

Parton distribution functions pdfs $(x, Q^2) \rightarrow (x, \mathbf{k_T}, Q^2)$: 3D or Transverse Momentum Dependent (TMD) pdfs

Boer-Mulders effect: correlation between the **parton** k_T and **its spin** (in an unpolarized nucleon)

-

Double-node structure of transverse-momentum distributions predicted for scalar and pseudoscalar quarkonia \rightarrow give access to the Boer-Mulders TMD pdf for gluons

Boer-Mulders effect

Parton distribution functions pdfs $(x, Q^2) \rightarrow (x, \mathbf{k_T}, Q^2)$: 3D or Transverse Momentum Dependent (TMD) pdfs

Boer-Mulders effect: correlation between the **parton** k_T and **its spin** (in an unpolarized nucleon)

-

Double-node structure of transverse-momentum distributions predicted for scalar and pseudoscalar quarkonia \rightarrow give access to the Boer-Mulders TMD pdf for gluons

Experimental probes @ AFTER
 scalar and pseudoscalar quarkonia: χ_{c0}, χ_{b0}, η_c, η_b (PID and modern calorimetry)

Sivers effect with a transversaly polarized target

Sivers effect in a **transversaly polarized nucleon**: correlation between the **parton** k_T and the **proton spin**

Polarizing the target: measuring asymmetry to access the 3D or Transverse Momentum Dependent (TMD) pdfs.

Sivers effect with a transversaly polarized target

Sivers effect in a **transversaly polarized nucleon**: correlation between the **parton** k_T and the **proton spin**

- **(**

Polarizing the target: measuring asymmetry to access the 3D or Transverse Momentum Dependent (TMD) pdfs.

- Experimental probes @ AFTER
- Drell-Yan \rightarrow quark Sivers effect
- Quarkonia, Open Charm and Beauty (B and D mesons), isolated γ and γ -jet \rightarrow gluon Sivers effect
- Asymmetries > 5% predicted in Drell-Yan for the target-rapidity region (*x_F* = *x_{beam}* - *x_{target}* < 0) where the k_T-spin correlation is the largest

Sivers effect with a transversaly polarized target

Sivers effect in a **transversaly polarized nucleon**: correlation between the **parton** k_T and the **proton spin**

Polarizing the target: measuring asymmetry to access the 3D or Transverse Momentum Dependent (TMD) pdfs.

- Experimental probes @ AFTER
- Drell-Yan \rightarrow quark Sivers effect
- Quarkonia, Open Charm and Beauty (B and D mesons), isolated γ and γ -jet \rightarrow gluon Sivers effect
- Asymmetries > 5% predicted in Drell-Yan for the target-rapidity region (x_F = x_{beam} - x_{target} < 0) where the k_T-spin correlation is the largest

see also T. Liu and B.Q. Ma Eur.Phys.J. C72 (2012) 2037

Gluon distribution in nucleus at large x

Large uncertainty in nuclei at large *x*

• Experimental probes @ AFTER

- Quarkonia
- Isolated photons
- High p_T jets ($p_T > 20 \text{ GeV/c}$)

 \rightarrow to access target $x_g = 0.3 - 1$ (>1 Fermi motion in nucleus)

- Target versatility
- Probing the A-dependence of shadowing and nuclear matter effects

LHeC CDR J. Phys. G 39 (2012) 075001

W, Z production in the threshold region

With high luminosity fixed-target experiment, W and Z production accessible Unique opportunity to study the W and Z production near threshold @ AFTER Very large *x* partons in the nucleon/nucleus target probed Large NLO and NNLO corrections: QCD laboratory near threshold at large scale If W'/Z' exists, similar threshold corrections than W and Z

Quark Gluon Plasma

In nucleus-nucleus collisions at high ultrarelativistic energy \rightarrow Quark Gluon Plasma (QGP) formation

RHIC energy scan shows suppression of particles at $\sqrt{s_{NN}} = 39$, 62, 200 GeV (π^0 , J/ Ψ , ...) but low statistics for $\sqrt{s_{NN}} < 200$ GeV and scarse / no pp and pA reference

Cold Nuclear Matter (i.e not Hot from QGP) measured in pA

PHENIX, Phys.Rev. C86 (2012) 064901, arXiv .1208:2251

Quark Gluon Plasma

In nucleus-nucleus collisions at high ultrarelativistic energy \rightarrow Quark Gluon Plasma (QGP) formation

RHIC energy scan shows suppression of particles at $\sqrt{s_{NN}} = 39, 62, 200 \text{ GeV} (\pi^0, J/\Psi, ...)$ but low statistics for $\sqrt{s_{NN}} < 200 \text{ GeV}$ and scarse / no pp and pA reference

Cold Nuclear Matter (i.e not Hot from QGP) measured in pA

- Experimental probes **(a)** AFTER $\sqrt{s} = 72$ GeV
- Quarkonia
- Jets
- Low mass lepton pairs
- ...
- Target versatility
- In PbA, different nuclei: A-dependent studies
- In pA, precise estimate of Cold Nuclear effects

PHENIX, Phys.Rev. C86 (2012) 064901, arXiv 1208:2251

Υ sequential melting in QGP

Bottomonium family: five states, detection of the three Υ states separately (good resolution needed) to probe the bottomonium sequential suppression

See Jean-Philippe's talk on friday

Υ sequential melting in QGP

0.2

°ò

100

50

150

200

250

300

350

400

450 N_{oart}

Bottomonium family: five states, detection of the three Υ states separately (good resolution needed) to probe the bottomonium sequential suppression

January 13th 2014

See Jean-Philippe's talk on friday

Luminosities in pH, pA, PbH and PbA

A possibility for proton and lead beam extraction at the LHC

- Proposal for the insertion of a bent crystal in the LHC beam
- Bent, single crystal of Si or Ge 17cm long crystal
- MKD kicker section at ~200 m from IP6
- Deflection angle = 0.257 mrad (~7 T.m equivalent magnet)
- Distance of 7 σ to the beam to intercept and deflect the beam halo
- No loss in the LHC beam
- Bent crystal acts as a beam collimator

- Proton beam extraction
- Single- or multi pass extraction efficiency of 50%
 N_{beam loss LHC} ~ 10⁹ p/s → N_{extracted beam} = 5 10⁸ p/s
 Extremely small emittance: beam size in the extraction direction) 950 m after the extraction ~ 0.3 mm
- Ion beam extraction
- Ions extraction tested at SPS, is expected to be also possible at LHC but needs more study
- May require bent diamonds (highly resistant to radiations) *P Ballin et al. NIMB 267 (2009*

P. Ballin et al, NIMB 267 (2009) 2952

See Andry's talk

Luminosities in pH and pA @ 115 GeV

- Intensity: N_{beam} = 5.10⁸ protons.s⁻¹
- Beam: 2808 bunches of $1.15 \times 10^{11} \text{ p} = 3.2 \times 10^{14} \text{ p}$
- Bunch: Each bunch passes IP at the rate: $\sim 11 \text{ kHz}$
- Instantaneous extraction: IP sees 2808 x 11000~3.10⁷ bunches passing every second → extract ~16 protons in each bunch at each pass
- Integrated extraction: Over a 10h run: extract ~5.6% of the protons stored in the beam

- Instantaneous Luminosity
 - $L = N_{beam} \times N_{Target} = N_{beam} \times (\rho \times e \times N_A)/A$
 - $N_{beam} = 5 \times 10^8 \text{ p}^+/\text{s}$
 - \mathbf{e} (target thickness) = 1 cm

Integrated luminosity

- 9 months running/year
- 1 year $\sim 10^7$ s

Target	ρ	Α	L	ſL
(1 cm thick)	(g cm ⁻³)		$(\mu b^{-1} s^{-1})$	$(pb^{-1} yr^{-1})$
solid H	0.088	1	26	260
liquid H	0.068	1	20	200
liquid D	0.16	2	24	240
Be	1.85	9	62	620
Cu	8.96	64	42	420
W	19.1	185	31	310
Pb	11.35	207	16	160

 \Rightarrow Large luminosity in pH(A) ranging from 0.1 and 0.6 fb⁻¹ for a 1 cm thick target \Rightarrow Larger luminosity with 50 cm or 1 m H2 or D2 target

Luminosities in PbA @ 72 GeV

- Intensity: $N_{beam} = 2.10^5 \text{ Pb.s}^{-1}$
- Beam: 592 bunches of $7x10^7$ ions = $4.1x10^{10}$ ions
- Bunch: Each bunch passes IP at the rate $\sim 11 \text{ kHz}$
- Instantaneous extraction: IP sees 592 x 11000~6.5.10⁶ bunches passing every second → extract ~0.03 ions in each bunch at each pass
- Integrated extraction: Over a 10h run: extract ~15% of the ions stored in the beam

- Instantaneous Luminosity
 - $L = N_{beam} \times N_{Target} = N_{beam} \times (\rho \times e \times N_A)/A$
- $N_{\text{beam}} = 2 \times 10^5 \text{ Pb/s}$
- e (target thickness) = 1 cm

• Integrated luminosity

- 1 months running/year
- 1 year $\sim 10^6$ s

Target	ρ	Α	L	ſL
(1 cm thick)	(g cm ⁻³)		$(mb^{-1} s^{-1})$	$(nb^{-1} yr^{-1})$
solid H	0.088	1	11	11
liquid H	0.068	1	8	8
liquid D	0.16	2	10	10
Be	1.85	9	25	25
Cu	8.96	64	17	17
W	19.1	185	13	13
Pb	11.35	207	7	7

 \Rightarrow AFTER provides a good luminosity to study QGP related measurements

Polarizing the hydrogen target

• Instantaneous Luminosity

- $L = N_{beam} \times N_{Target} = N_{beam} \times (\rho \times e \times N_A)/A$
- $N_{\text{beam}} = 5 \times 10^8 \text{ p}^+/\text{s}$
- e (target thickness) = 50 cm

 x_{p}^{\uparrow} range corresponds to Drell-Yan measurements

Experiment	particles	energy (GeV)	\sqrt{s}	x_p^{\intercal}	\mathcal{L} (nb ⁻¹ s ⁻¹)
AFTER	$p + p^{\uparrow}$	7000	115	0.01÷0.9	1
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	$0.2 \div 0.3$	2
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	~ 0.05	2
(low mass)	-				
RHIC	$p^{\uparrow} + p$	collider	500	$0.05 \div 0.1$	0.2
J-PARC	$p^{\uparrow} + p$	50	10	$0.5 \div 0.9$	1000
PANDA	$\bar{p} + p^{\uparrow}$	15	5.5	$0.2 \div 0.4$	0.2
(low mass)					
PAX	$p^{\uparrow} + \bar{p}$	collider	14	$0.1 \div 0.9$	0.002
NICA	$p^{\uparrow} + p$	collider	20	$0.1 \div 0.8$	0.001
RHIC	$p^{\uparrow} + p$	250	22	$0.2 \div 0.5$	2
Int.Target 1	-				
RHIC	$p^{\uparrow} + p$	250	22	$0.2 \div 0.5$	60
Int.Target 2	-				

 \Rightarrow AFTER provides a good luminosity to study target spin related measurements \Rightarrow Complementary x_p range with other spin physics experiments

Quarkonium case: annual yields

Quarkonium cross-sections at AFTER energy

Inclusive pp cross-sections

 $\begin{array}{l} B_{ll}\,d\sigma/dy|_{y=0} @~115~GeV\\ J/\psi = 20~nb\\ Y &= 40~pb \end{array}$

Inclusive pp cross-sections

 $\begin{array}{l} B_{ll} \ d\sigma/dy|_{y=0} @ 72 \ GeV \\ J/\psi = 10 \ nb \\ Y \ = 15 \ pb \end{array}$

Quarkonium yields in pH and pA @ 115 GeV

In pp

 \Rightarrow RHIC @ 200 GeV x 100 with 10 cm thick H target

 \Rightarrow Comparable to LHCb if 1m H target

 \Rightarrow Detailed studies of quarkonium production (p_T, y, polarization, different quarkonium states, ...)

In pA

 $\Rightarrow RHIC @ 200 GeV x 100 with 1 cm Pb$ target $\Rightarrow Detailed studies of cold nuclear matter$ effect in pA (p_T, y, A, ...)

Geometrical Acceptance

Simulations using ALICE as a fixed target experiment at LHC quotes a Geometrical Acceptance of 8% for J/ ψ (4 π) $\rightarrow \mu^+\mu^-$ (2.5< y < 4) using the Forward Muon Spectrometer @ 115 GeV

Kurepin et al. Phys.Atom.Nucl. 74 (2011)

Target	∫dt£	$\mathcal{B}_{\ell\ell} \frac{dN_{J/\psi}}{dy}\Big _{y=0}$	$\mathcal{B}_{\ell\ell} \frac{dN_{\Upsilon}}{dy}\Big _{y=0}$
10 cm solid H	2.6	5.2 10 ⁷	1.0 10 ⁵
10 cm liquid H	2	4.0 10 ⁷	8.0 10 ⁴
10 cm liquid D	2.4	9.6 10 ⁷	1.9 10 ⁵
1 cm Be	0.62	1.1 10 ⁸	$2.2 \ 10^5$
1 cm Cu	0.42	5.3 10 ⁸	1.1 10 ⁶
1 cm W	0.31	1.1 10 ⁹	2.3 10 ⁶
1 cm Pb	0.16	$6.7 \cdot 10^8$	1 3 106
	0.05	3.6 107	1.8 10 ⁵
$pp \text{ low } P_T \text{ LHC (14 TeV)}$	2	1.4 10 ⁹	$7.2\ 10^{6}$
pPb LHC (8.8 TeV)	10 -4	1.0 10 ⁷	7.5 10 ⁴
pp RHIC (200 GeV)	1.2 10 ⁻²	4.8 10 ⁵	$1.2 \ 10^3$
dAu RHIC (200 GeV)	1.5 10 ⁻⁴	$2.4 \ 10^{6}$	5.9 10 ³
dAu RHIC (62 GeV)	3.8 10 ⁻⁶	$1.2 \ 10^4$	1.8 10 ¹

Luminosity per year in fb⁻¹

Quarkonium distributions in pp @ 115 GeV

Accessing the large x gluon pdf

PYTHIA simulation $\sigma(y) / \sigma(y=0.4)$ statistics for one month 5% acceptance considered

Statistical relative uncertainty Large statistics allow to access very backward region

Gluon uncertainty from MSTWPDF

- only for the gluon content of the target

$$x_{\rm g} = {\rm M}_{\rm J/\Psi}/{\rm \sqrt{s}} {\rm e}^{-{\rm y}{\rm C}{\rm M}}$$

 J/Ψ $y_{CM} \sim 0 \rightarrow x_g = 0.03$ $y_{CM} \sim -3.6 \rightarrow x_g = 1$

Y: larger x_g for same y_{CM} $y_{CM} \sim 0 \rightarrow x_g = 0.08$ $y_{CM} \sim -2.4 \rightarrow x_g = 1$

 \Rightarrow Backward measurements allow to access large *x* gluon pdf Simulations needed !

Quarkonium yields in PbA @ 72 GeV

	Target	∫dtL	$\mathcal{B}_{\ell\ell} \frac{dN_{J/\psi}}{dy}\Big _{y=0}$	$\mathcal{B}_{\ell\ell} \frac{dN_{\Upsilon}}{dy}\Big _{y=0}$
	10 cm solid H	110	4.3 10 ⁵	8.9 10 ²
	10 cm liquid H	83	3.4 10 ⁵	6.9 10 ²
	10 cm liquid D	100	8.0 10 ⁵	1.6 10 ³
PhΔ	1 cm Be	25	9.1 10 ⁵	1.9 10 ³
Some statistics than DIUC @ 200 CoV	1 cm Cu	17	4.3 10 ⁶	0.9 10 ³
\Rightarrow Same statistics than KHIC (<i>a</i>) 200 GeV	1 cm W	13	9.7 10 ⁶	1.9 10 ⁴
and LHC and 2 orders of magnitude larger	1 cm Pb	7	5.7 10 ⁶	1.1 104
than RHIC @ 62 GeV	dAu RHIC (200 GeV)	150	2.4 106	5.9 10 ³
	dAu RHIC (62 GeV)	3.8	$1.2 \ 10^4$	1.8 10 ¹
\Rightarrow Detailed studies possible for	AuAu RHIC (200 GeV)	2.8	4.4 10 ⁶	1.1 10 ⁴
quarkonium states (ψ ', χ_c , A-	AuAu RHIC (62 GeV)	0.13	4.0 10 ⁴	6.1 10 ¹
dependence,)	pPb LHC (8.8 TeV)	100	1.0 10 ⁷	7.5 104
	PbPb LHC (5.5 TeV)	0.5	7.3 106	$3.6 10^4$

Luminosity per year in fb⁻¹

Multiplicity in PbA

Charged particles per unit of rapidity: (x 1.5 = charged+neutral) p+p @ 115 GeV ~ 2 d+Au @ 200 GeV : max ~11

Au+Au @ 62.4 GeV : max ~ 450

\rightarrow A highly granular detector is needed

R_{max} R_{min}	y < 0.5	R _{min} (cm)	R _{max} (cm)	Surface (cm ²)
	Vertex	1.5	10	~ 300
	Calo	10	40	~4700

Conclusion

• LHC proton and lead beams continuous extraction with bent crystal offers many physics opportunities

• Large luminosities provide access to large and very large parton *x* measurements for quarks and gluons: QCD laboratory at large *x*

• Fixed-target mode allows for target versatility: hydrogen, deuteron, nucleus (nuclear effect and QGP), polarized target (spin physics)

• AFTER designed as a multi-purpose experiment

http://after.in2p3.fr

M. Anselmino (Torino), R. Arnaldi (Torino), S.J. Brodsky (SLAC), V. Chambert (IPN), J.P. Didelez (IPN), B. Genolini (IPN), E.G. Ferreiro (USC), F. Fleuret (LLR), C. Hadjidakis (IPN), J.P Lansberg (IPN), C. Lorcé (IPN), A. Rakotozafindrabe (CEA), P. Rosier (IPN), I. Schienbein (LPSC), E. Scomparin (Torino), U.I. Uggerhøj (Aarhus)

Looking for partners!

Drell-Yan continuum

Tentative design for AFTER

Rapidity boost in a fixed target mode

- Very high boost:
- With 7 TeV beam $\gamma = \sqrt{s/(2m_p)} = 61.1$ and $y_{CMS} = 4.8$
- With 2.76 TeV beam $\gamma = 38.3$ and $y_{CMS} = 4.3$
- $\eta_{CM} = \eta_{lab} y_{CMS}$ forward region: $\eta_{CM} > 0$ backward region: $\eta_{CM} < 0$
- $\eta = -\ln \tan \theta/2$ $\rightarrow \theta (y_{CM}=0) \sim 0.9^{\circ} (16 \text{ mrad})$ $- y_{lab}(J/\Psi) \sim 4.8 \rightarrow x_2(J/\Psi) = 0.03$ $- y_{lab}(\Upsilon) \sim 4.8 \rightarrow x_2(\Upsilon) = 0.08$
- Taking $x_2 = M/\sqrt{s} e^{-yCM}$ - $x_2(J/\Psi) = 1 \rightarrow y_{lab}(J/\Psi) \sim 1.2$ - $x_2(\Upsilon) = 1 \rightarrow y_{lab}(\Upsilon) \sim 2.4$
- Very well placed to access backward physics

A tentative design for AFTER

- Tentative design $1.3 < y_{lab} < 5.3$
- With 7 TeV beam : $-3.5 < y_{CM} < 0.5$
- With 2.76 TeV beam: $-3 < y_{CM} < 1$
- $\theta_{\min} = 10 \text{ mrad}$

• Multi-purpose detector

- Vertex
- Tracking (+ dipole magnet)
- RICH
- Calorimetry
- Muons

• **High boost** \rightarrow forward and as compact as possible detector

Detector dimension

- Muons: Magnetize Fe (Minos)

- ...

Detector dimension

- ...

Longitudinal polarized target: helicity distr.

parton helicity distribution in a **longitudinally polarized nucleon**:

Х

Longitudinal polarized target: helicity distr.

parton helicity distribution in a **longitudinally polarized nucleon**:

Experimental probes @ AFTER
W^{+/-} → individual helicity distribution of quark and anti-quark

