

Soutenance

Stage de fin d'étude

Deep Learning for Imaging Calorimeters

Superviseur : Dr. Balázs KÉGL Février-Juillet 2013

Franck DUBARD ING 3 - SCIA 2013

Outline

- Motivation
- Data description
- Internship project
 - Overview
 - Classification : AdaBoost
 - Pre-processing
 - Normalisation : histogram equalisation
 - Binarisation : automatic thresholding
 - Feature-extracting methods
 - Manual : Benchmark
 - Automatic : Deep Learning
 - Results
- Perspectives

Motivation

Classification

- MultiBoost package
 - Fast & efficient C++ implementation of algorithms based on the boosting paradigm
- AdaBoost
 - The classifiers it uses can be weak, but as long as their performance is slightly better than random, they will improve the final model
 - It generates and calls an new weak classifier in each series of rounds, where at each call, a distribution of weights is updated that indicates the importance of examples in the dataset for classification
 - At each round, the weights of incorrectly classified examples are increased, and the weights of the correctly classified examples are decreased
 - In that way, the new classifier focuses on "difficult" examples (which are hard to classify)

Pre-processing (1|2) Input normalisation using Histogram equalisation

8

Pre-processing (2|2) Binarising with automatic thresholding by entropy maximisation

Maximizing

$$E(S) = \sum_{i=0}^{S} \left(\frac{h(i)}{N_0^S} \cdot Log\left(\frac{h(i)}{N_0^S}\right) \right) - \sum_{i=S+1}^{255} \left(\frac{h(i)}{N_1^S} \cdot Log\left(\frac{h(i)}{N_1^S}\right) \right)$$

where h is the histogram of the data

and $\begin{cases} N_0^S & \text{is the number of pixel which values are less than } S \\ N_1^S & \text{is the number of pixel which values are higher than } S + 1 \end{cases}$

Feature extracting methods (1|2) Benchmark

- Used as a reference baseline to which we will compare new results
- Using insight from physicists : what features discriminate the classes

Feature extracting methods (2|2) Deep Learning (1|3)

- New paradigm of Machine Learning
 - Recent rebirth in 06's
 - Strong impact in the field of Computer Vision or Natural Language Processing
- Main interest
 - Add an unsupervised pre-learning step before the supervised classification that automatically extracts relevant features from the training dataset
- List of algorithms commonly used
 - Auto-Associators Auto-Encoders and their variants
 - Restricted Boltzmann Machines
 - Sparse Coding
 - Convolutionnal Networks

Feature extracting methods (2|2) Deep Learning (2|3) Denoising Auto-Encoder (1|2)

- Clean input x ∈ [0,1]^d is partially destroyed, yielding corrupted input: x̃ ~ q_D(x̃|x).
- $\tilde{\mathbf{x}}$ is mapped to hidden representation $\mathbf{y} = f_{\theta}(\tilde{\mathbf{x}})$.
- From **y** we reconstruct a $\mathbf{z} = g_{\theta'}(\mathbf{y})$.
- Train parameters to minimize the cross-entropy "reconstruction error"

ICML 2008, Extracting and Composing Robust Features with Denoising Autoencoders

Feature extracting methods (2|2) Deep Learning (2|3) Denoising Auto-Encoder (2|2)

Cross-Entropy Loss Function

$$L_H(\mathbf{x}, \mathbf{z}) = -\sum_{k=1}^d \left[\mathbf{x}_k \log \mathbf{z}_k + (1 - \mathbf{x}_k) \log(1 - \mathbf{z}_k) \right]$$

To be used when $\mathbf{x} \in [0, 1]^d$

Mean Square Error

$$L_H(\mathbf{x}, \mathbf{z}) = ||\mathbf{x} - \mathbf{z}||^2$$

Feature extracting methods (2|2) Deep Learning (3|3) Restricted Boltzmann Machine (1|5)

- Particular type of energy-based model
 - Define a probability function P(x) through an energy function

$$\begin{split} P(x) &= \frac{e^{-\text{Energy}(x)}}{Z} \\ Z &= \sum_{x} e^{-\text{Energy}(x)}, \text{ which are called partition function} \end{split}$$

Feature extracting methods (2|2) Deep Learning (3|3) Restricted Boltzmann Machine (2|5)

EBM with hidden variables

New Probability function

The energy function depends now on x and h. But we only observe x and not (x,h), so we need to replace it on the previous equation by FreeEnergy(x) which is

FreeEnergy
$$(x) = -log \sum_{h} e^{-\text{Energy}(x,h)}$$
$$P(x) = \frac{e^{-\text{FreeEnergy}(x)}}{Z}$$

Feature extracting methods (2|2) Deep Learning (3|3) Restricted Boltzmann Machine (3|5)

- General Boltzmann Machines are EBMs with hidden variables
- Restricted Boltzmann Machines are special case of Boltzmann Machines

Figure 1: Left: A general Boltzmann machine. The top layer represents a vector of stochastic binary "hidden" features and the bottom layer represents a vector of stochastic binary "visible" variables. **Right**: A restricted Boltzmann machine with no hidden-to-hidden and no visible-to-visible connections.

Boltzmann Machine : Energy $(x, h) = -b^T x - c^T h - h^T W x - x^T L x - h^T J h$ Restricted Boltzmann Machine : Energy $(x, h) = -b^T x - c^T h - h^T W x$ Feature extracting methods (2|2) Deep Learning (3|3) Restricted Boltzmann Machine (4|5) We run a Markov chain to convergence, using Gibbs sampling as the transition operator. In RBM, visible and hidden units are independent conditionally.

A step in the Markov chain is thus taken as follows:

$$h^{(n+1)} \sim sigm(W^T v^{(n)} + c)$$
$$v^{(n+1)} \sim sigm(W h^{(n+1)} + b)$$

Problem : Too expensive to achieve convergence

Feature extracting methods (2|2) Deep Learning (3|3) Restricted Boltzmann Machine (5|5)

- Contrastive Divergence
 - Does not wait for the chain to converge
 - Samples are obtained after only k-steps of Gibbs sampling
- Persistent Contrastive Divergence
 - We do not restart the chain for each observed example
 - The state of the chain is preserved all along

Feature extracting methods (2|2) Results (1|2) Examples of filters obtained (1|2)

Where do they come from ?

Auto-Associator

Feature extracting methods (2|2) Results (1|2) Examples of filters obtained (2|2)

Feature extracting methods (2|2) Results (2|2) Automatic VS Manually feature extracting methods

Perspectives (12)

- Multi-layer architectures
 - Stacked Denoising Auto-Encoders
 (Output layer N = Input layer N+I)
 - Stacked Restricted Boltzmann Machines (Hidden layer N = Visible layer N+I)
 - Deep Belief Networks
 - Deep Boltzmann Machines

Perspectives (2|2) Future work

- Improving existing models or making new ones
- More classes, multi-label / multi-task
- Managing the complete detection process
- Real-time decision-making (trigger)
 - might have constraints on hardware