

Search for New Scalar Diphoton Resonances in ATLAS

Nicolas Berger (LAPP)

Introduction

One of the main question for ATLAS and CMS today: is **the Higgs boson "just" the SM one, or is there something else ?**

- Powerful probes through Higgs properties but so far fully compatible with SM
- Alternative: Search directly for BSM signals

Nicolas Berger - GDR Terascale 2014-06-04

Is there something else ?

- Exotic Searches : Focused on "large" highmass signals
- **Complementary** : Higgs searches extended to Higgs-like states
 - Extend search ranges
 - set limits on $\sigma x BR$ if no signal
- Already done at high mass for H->WW, ZZ
- What about γγ ? CMS result for the "standard" search window

CMS-PAS-HIG-13-016

Models with Extra Higgs-like Resonances

- Typical target: models with extended Higgs sector
 - **2HDM**: 2 extra neutral Higgses H, A, can decay to $\gamma\gamma$ (small tan β)
 - Also possible signals in the context of NMSSM, Extra Higgs singlet,...
- **Complementary** to constraints from Higgs properties measurements
- Hard to make $\Gamma_{\gamma\gamma}$ large, so to get nonnegligible BR($\gamma\gamma$), usually need small Γ \Rightarrow **Narrow state**

ATLAS-CONF-2014-010

Standard H $\rightarrow\gamma\gamma$ Search

- Small bump on smooth background – mainly $\gamma\gamma$, γ jet, jj bkgs
- **Template fit** using analytical shapes for signal and bkg
- Selection :
 - $E_{_{T1}} > 40 \text{ GeV}, E_{_{T2}} > 30 \text{ GeV},$
 - $-100 < m_{\gamma\gamma} < 160 \text{ GeV}$
 - Consider 110 < m_{H} < 150 GeV
- Categories: separate out specific regions:
 - central/non-central η , low/high $p_{_T}$, conv/unconv photons
 - VBF-like, VH-like configurations

Challenges for Extended search

- Need to describe the signal and background over a much wider mass range
- Below 100 GeV, need to deal with $Z \rightarrow ee background$
- $H \rightarrow \gamma \gamma$ also treated as a background.
- Make the result as general as possible, so it is applicable to a wide range of models
 - Avoid most categories

Overview of the Analysis

- Extend search to 60 < m_y < 700 GeV
- **Photons**: same reconstruction, identification as standard $H \rightarrow \gamma \gamma$ analysis: ~70% eff
 - Require $|\eta| < 2.37$, excluding Barrel/EC transition 1.37 < $|\eta| < 1.56$.
 - photon ID using calorimeter shower shapes, + tracks for convesions
 - calorimeter-based and track-based isolation
- Model-independence
 - Report fiducial cross-section
 - remove most categories
 - 8 TeV data only. Use full 2012 dataset (20.3 fb⁻¹)
- Separate low-mass (60 < $m_{\gamma\gamma}$ < 120 GeV) and high-mass (100 < $m_{\gamma\gamma}$ < 700 GeV) regions

Nicolas Berger - GDR Terascale 2014-06-04

Low-Mass Search (60 < $m_{\gamma\gamma}$ < 120 GeV)

- Lower photon E_T cuts to $E_{T1,2} > 22 \text{ GeV}$ (using lower trigger thresholds)
- Use 3 conversion categories: N_{conv}=0,1,2 to mitigate DY background
- Use $Z \rightarrow ee$ to determine DY template
 - e→g fakes mostly with large bremsstrahlung, so add MC-based correction to describe γγ template
- **DY Normalization**: $e \rightarrow \gamma$ fake rates computed from data

γ conversion category	UU	CU	CC
N _{data}	272184	253804	63224
$N_{\rm DY}$	1080 ± 260	3400 ± 600	2700 ± 250
$f_{\rm DY}$	15.0%	47.3%	37.7%
f_X	48.7%	42.5%	8.8%

Low-Mass Search

Continuum Background :

- Mainly $\gamma\gamma$, γ j, jj and non-Z DY tails.
- Use Landau+Exponential shape, parameters and N_{cont} free in the fit

High-Mass Search (100 < $m_{\gamma\gamma}$ < 700 GeV)

- Relative cuts $E_{T1}/m_{\gamma\gamma} > 0.4$, $E_{T2}/m_{\gamma\gamma} > 0.3$ to improve sensitivity at high mass
- Use sliding window $m_x w < m_y < m_x + w$, $w = 40 (m_x 110)/100 + 10 \text{ GeV}$
 - $exp(am+bm^2)$ shape in each interval, parameters and N_{cont} free in the fit
- No categories
- Higgs: use PDG mass m_μ=125.9 GeV, μ=1 (SM yield).
- Extend analysis up to $m_{\gamma\gamma}$ =700 GeV, when statistics run out
- Covers 110 < m_x < 600 GeV.

m_{γγ} [GeV]

Signal Description

- Assume narrow width for all masses.
 Valid for Γ <~ 1 GeV + 0.01·m_x
- Neglect interference with continuum
 - Interference is model-dependent
 - Significant distortion of signal peak for Γ~GeV
- Describe signal shape using
 "Double-sided Crystal Ball" shape
 - Parameters determined as functions of m_x for 65 < m_x < 600 GeV

Lance J. Dixon and Ye Li , Phys. Rev. Lett. 111, 111802 (2013)

 Allow peak position and width to float in the fit, constrained by Energy-scale and resolution measurements.

Systematics

Signal yield		Drell-Yan background	
Luminosity	2.8 %	Normalization ²	9-25 %
Trigger	0.5 %	Peak position ²	1.5-3.5 %
γ identification ¹²	1.6-2.7 %	Template shape ²	1.5-3 %
γ isolation ¹	1 - 6 %	Higgs background	
Energy resolution ¹²	10 - 40 %	Cross-section ³	9.6 %
Signal peak position		Branching ratio	4.8 %
Energy scale	0.6 %	C_X factor	
Continuum $\gamma\gamma,\gamma j, j j$ background		Topology ¹	3-15 %
Signal bias ¹	1-67 events	Pile-up ¹	1-3 %

Leading systematic: **resolution uncertainty** 10% at low mass, up to 40% at ~600 GeV UU

CC

Looking for Peaks

Local p_0

ATLAS-CONF-2014-031

- Only 2 points with local significance ~2 σ , at m_x ~200 GeV and ~530 GeV
- Global significance $< 0.1\sigma$ No signal!

Fiducial Cross-Section Definition

- Report Fiducial cross-section inside truth acceptance
 - $\begin{array}{l} \ \ E_{_{T\gamma1}}, \ \ E_{_{T\gamma2}} > 22 \ \ GeV \ (m_{_X} < 110 \ \ GeV) \\ E_{_{T\gamma1}}/m_{_{\gamma\gamma}} > 0.4, \ \ E_{_{T\gamma2}}/m_{_{\gamma\gamma}} > 0.3 \ (m_{_X} > 110 \ \ GeV) \end{array}$
 - $|\eta_{\gamma}| < 2.37$
 - Truth-level isolation < 12 GeV within $\Delta R=0.4$
- Compute cross-section as

$$\sigma_{fid} \cdot BR(H \rightarrow \gamma \gamma) = \frac{N_{data}}{C_X \cdot \mathcal{L}} \text{ with } C_X = \frac{N_{MC}^{reco}}{N_{MC}^{fid}}$$

Truth closely follows reco selection
$$\Rightarrow \text{Reduces model-dependence}$$

$$- \text{ Checked on the 5 usual Higgs production modes}$$

$$- \text{ Residual ttH/ggF difference used as systematic}$$

Should apply fiducial cuts at generator level when testing models}

$$m_x [GeV]$$

Limit

ATLAS-CONF-2014-031

Covers almost an order of magnitude in mass Ranges from ~100 fb at 65 GeV to ~1 fb at 600 GeV.

Outlook

- Search for γγ resonances over a much wider range than previous studies
- No signal observed...
- Fiducial Cross-section limit applicable to a wide range of models
 - will be released in HepData format, together with a RIVET routine, to make comparisons with theory easier

Interference

Lance J. Dixon and Ye Li, Phys. Rev. Lett. 111, 111802 (2013)

Limit: Zoom on Low Mass Region

p0 : Zoom in Low-Mass Region

Double-Sided CB Shape

Signal Parametrization

Drell-Yan Background

- Obtain $\gamma\gamma$ template from Z->ee by applying MC-driven transformation:
 - -Shift and smear electron ET
 - -Shift and smear electron Df(track, cluster)
- ~2 GeV shift in peak position, broader shape

Nicolas Berger - GDR Terascale 2014-06-04

High-Mass Searches: WW, ZZ

Nicolas Berger - GDR Terascale 2014-06-04

CMS Extra yy Resonance Search

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

150

-2*∆LL

5

0.8

0.9

1.0