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REMINDER: GLOBAL SUSY
In a global supersymmetric theory in flat space time, supersymmetry
is broken spontaneously when the vacuum has non-zero energy.

[Q,Q] = H H|0 >6= 0⇒ Q|0 >6= 0

Preserving Lorentz invariance, for N = 1 SUSY in 4d

F 6= 0 or D 6= 0 → H = F2 + D2

(For simplicity auxiliary fields F,D taken real).
Spontaneous breaking⇒ a goldstino is a spin 1

2 field
(Gα, Ḡα) in the (1

2 , 0)⊕ (0, 1
2) representation of the Lorentz group.

At quadratic order a kinetic term:

LG = −iḠσ̄µ∂µG,

satisfies the Dirac equation

σ̄µ∂µG = 0, σµ∂µḠ = 0
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REMINDER: LOCAL SUSY

N = 1 local supersymmetry for vierbein ea
µ, gravitino (ψµα, ψ̄µα) of

spin 3
2 and the goldstino G fields:

δea
µ = − 1

MP

(
iε̄σ̄aψµ − iεσaψ̄µ

)
δψµ = −Mp2∂µε

δψ̄µ = −Mp2∂µε̄

δG =
√

2Fε

δḠ =
√

2Fε̄
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REMINDER: LOCAL SUSY

L = − 1
2M2

P
eR−F2e− i

1
2
εµνρσψ̄µσ̄ν∂ρψσ − iḠσ̄µ∂µG

−i
F√
2Mp

(
ψµσνḠ + ψ̄µσ̄νG

)
+ · · ·

Problem solved by adding a combination :

∆L = F2e− 1
2

(m 3
2
ψµσ

µνψν − m∗3
2
ψ̄µσ

µνψ̄ν − m 3
2
GG− m∗3

2
ḠḠ)

Total Lagrangian invariant under supersymmetry variation

δψµ = −Mp

(
2∂µε−im∗3

2
σµε̄

)
,

only if:

m 3
2

=
F√
3Mp

.
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REMINDER: LOCAL SUSY

Unitary gauge by performing the transformation

ψµα → ψµα +

√
2MP

F
∂µGα + i

1√
6
σµαα̇Ḡα̇ .

puts G→ 0 and leads to the Rarita-Schwinger Lagrangian for a
massive gravitino:

L =
1
2

(−iεµνρσψ̄µσ̄ν∂ρψσ − m 3
2
ψµσ

µνψν − m∗3
2
ψ̄µσ

µνψ̄ν)



INTRODUCTION REMINDER FLUID SUPER-HIGGS LAGRANGIAN: CONSTRAINTS AND EOM PROPAGATOR OUTLOOK

INTRODUCTION

We want to discuss propagation of a spin-3/2 in a fluid.
Fluids are omnipresent:

I radiation and matter in cosmology
I dark energy?
I dark sector breaking susy?
I heavy ion collisions (spin 3/2 describes a hadron?)

Work still on progress. I will present partial results.
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FLUID AND LORENTZ SYMMETRY:

I Fluid: stress-energy tensor < Tµν >6= 0
I Tensor with vev⇒ breaks Lorentz symmetry.
I ⇒ Preferred frame (center of mass of the fluid).
I ⇒ appearance of phonons, massless mode. For

Tµν = diag(ρ, p, p, p) the velocity is:

v2
B =

p
ρ
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FLUID AND GLOBAL SUSY

I Fluid: stress-energy tensor < Tµν >6= 0
I Temperature treats differently bosons and fermions⇒ breaks

SUSY.
I Ward-Takahashi identity⇒ spontaneous breaking
I ⇒ appearance of goldstino, massless Majorana state has been

named phonino.

For Tµν = diag(ρ, p, p, p) the velocity is:

v = vF =
p
ρ
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GOLDSTINO LAGRANGIAN

The goldstino equation of motion in a fluid:

Tµνγµ∂νG = 0⇒ γ0∂0G− vγi∂iG = 0

This can be deriveded from the Lagrangian

LG = − i
2T 4 TµνḠγµ∂νG

Here, T = |Tr 〈Tµν〉|
1
4 has dimension of mass.

For Tµν = −|F|2ηµν the Lagrangian reduces to that of the usual
goldstino of F-term case.
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GRAVITINO-PHONINO MIXING:

Describing the system phonino-gravitino at the quadratic order and
lowest order of an expansion in TMp

:

L = − i
2
εµνρσψ̄µγ

5γν∂ρψσ−
1
4
εµνρσnσλψ̄µγ5γργ

λψν

− i√
2
T 2

MP

Tµν

T 4 ψ̄µγνG

+ i
Tµν

2T 4 Ḡγµ∂νG +
1
4

Tµνnµν
T 4 ḠG
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GRAVITINO-PHONINO MIXING:

This Lagrangian is invariant under the supersymmetry
transformations with Lorentz violating coefficients:

δG =
√

2T 2ε ,

δψµ = −MP(2∂µε+ inµνγν ε̄)

if nµν satisfies:

−1
2
εµνσρε λγκρ nνλnσγ =

Tµκ

M2
P

In the unitary gauge, G is set to zero through the supersymmetry
transformation:

ψµ → ψµ +

√
2MP

T 2 ∂µG + i
MP√
2T 2

nµνγνḠ .
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THE NEW LAGRANGIAN

For a perfect fluid:

Tµν = ρ [vηµν + (1 + v)uµuν ]

a perfect fluid with four-velocity uµ such that uµuµ = −1.
In the fluid center of mass reference frame, corresponding to
uµ = (1, 0, 0, 0).
For the measure of Lorentz symmetry violation, we use:

εLV ≡ 1 +
p
ρ

= 1 + v .

The Lorentz invariant solution corresponds to v = −1.
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THE NEW LAGRANGIAN
The modified Rarita-Schwinger Lagrangian can be written as:

L =
1
2
ψ̄µSµνψν

where Sµν can be split into a kinetic and mass term:

Sµν = −i(γµγν + ηµν)/∂ + iγν∂µ − iγµ∂ν + Sµνm

where

Sµνm = m
[
γµγν + ηµν+

3εLV

4− 3εLV
(rµtν + tµrν)

]
with the notation

tµ = −uµuνγν
rµ = γµ + uµuνγν

for the projection of the gamma matrices along and orthogonal to uµ.
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PARAMETERS

The gravitino Lagrangian depends on the three parameters

uµ , ρ , and εLV

or
uµ , m , and n

where

m = n (1− 3
4
εLV)

and n is given for the fluid by:

n2 =
ρ

3M2
P

(Notice that n is equal to the Hubble parameter of an FRW metric that
would be generated by having Tµν on the r.h.s of Einstein equations).
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MAKE OF ψµα A SPIN- 3
2 STATE

Fierz and Pauli,

ψµα → (
1
2
,

1
2

)⊗ (
1
2
, 0) = (1,

1
2

)⊕ (0,
1
2

)

Irreducible spin 3
2 representation IFF the additional spin 1

2
components are projected out
The (0, 1

2) is removed by imposing

σ̄µψµ = 0

The representation (1, 1
2) has 6 d.o.f. each. To reduce the number of

d.o.f. to 4 we impose

∂µψµα = 0⇒ pµψµα = 0 .
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THE DEGREES OF FREEDOM IN A FLUID
ψµ has 8 degrees of freedom:

I 2 helicity-3/2 dof:

Pµν3/2ψν =

[
gµν − qµqν

q2 −
kµkν

k2 +
1
2

(rµ −
/kkµ

k2 )(rν −
/kkν

k2 )

]
ψν

I 2 helicity-1/2 dof : ψ 1
2

= rµψµ.
I 4 irrelevant helicity-1/2 to project-out :

π̃µ2ψµ = tµψµ

π̃µ3ψµ = (rµ − 3/kkµ

k2 )ψµ

This decomposition can be expressed explicitly as:

ψµ = ψµ3/2 −
1
3

rµψ 1
2
− tµtνψν −

1
6

(rµ − 3
/kkµ

k2 )(rν − 3
/kkν

k2 )ψν .
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THE NEW CONSTRAINTS

The usual Rarita-Schwinger constraints:

γµψµ = 0 pµψµ = 0

The new constraints projecting out four irrelevant degrees of freedom:

Tµνγµψν = −2iM2
P(∂µSµνm ) ψν

and
[kν + (/k − m

(1− 3
4εLV)

)rν ]ψν = 0

For a fluid at rest ∂µSµνm = 0
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GENERAL EQUATIONS OF MOTION

For the longitudinal mode:

(rµtν + tµrν)∂µψν + imψ 1
2

= − 3i
2 n(vψ 1

2
− tλψλ) .

while the transverse mode satisfies:

(γν∂ν + im)ψµ3/2 =
3in2

4k2 (rµrλ + 3rµλ)[(1 + v)∂λtγ ψγ

+ v∂λψ 1
2
− ∂ρ(tλψλ)] .

In general the equations are coupled.
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PERFECT FLUID

Diagonalisation:

(γ0∂0 − v γi∂i)ψ 1
2
− imψ 1

2
= 0

Andt the transverse part satisfies the decoupled equation

(γ0∂0 − γi∂i)ψ
µ
3/2 − imψµ3/2 = 0

Dirac equations satisfied by the longitudinal helicity-1/2 mode and
transverse helicity-3/2 modes with the same mass

m =

√
3

4MP

∣∣∣∣p− ρ
3√
ρ

∣∣∣∣
but different velocities. For ρ = −p = F2 we recover the usual
F-term case.



INTRODUCTION REMINDER FLUID SUPER-HIGGS LAGRANGIAN: CONSTRAINTS AND EOM PROPAGATOR OUTLOOK

THE PROPAGATOR

Gµν =
Πµν

3/2

p2 + m2 +
Πµν

1/2

m2 + v2k2 + q2 .

where the two polarizations can be written :

Πµν
3/2 =(m− /p)Pµν3/2 = Πµν

RS +
2
3

Cµ(/p + m)Cν

and

Cµ = γµ +
pµ

m
− 3

2
(rµ −

/kkµ

k2 ) .

and Πµν
RS is the Rarita-Schwinger polarisation tensor:

Πµν
RS = (m− /p)[ηµν +

1
3
γµγν + 2

pµpν

3m2 +
γµpν − γνpµ

3m
] .
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THE PROPAGATOR

Πµν
1/2 =− 2

3
[Cµ − 3

4
εLV(tµ +

pµ

m
)] (/p + m− εLV/k) [Cν − 3

4
εLV(tν +

pν

m
)]

+
3
4
εLV(m2 + v2k2 + q2)

/k
mk2 (tµpν − pµtν)

Note that the part corresponding to the spin-1/2 components of the
spinor-vector has a pole for m2 + v2k2 + q2 = 0 due to a different
dispersion relation.
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OUTLOOK

I We generalised the case of F-term Tµν = −F2ηµν to the case of
a general Tµν

I We get simple formulae for the perfect fluid case:

m =

√
3

4MP

∣∣∣∣p− ρ
3√
ρ

∣∣∣∣
I computation of the propagator opens the road for

phenomenological studies
I Lorentz-violation for spin 0, 1/2, 1 studied. Here, open the spin

3/2 case: limits on εLV .
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BACK-UP 1
A contribution, mcurv

3/2 , from the curvature of space-time and it is
induced by the total stress-energy tensor Tµνtotal. For a fluid at rest with
stress-energy tensor Tµν = diag(ρ, p, p, p).
The null energy condition implies that εLV , defined in (??), is positive
thus forbids superluminal sound velocities.
If Tµν = diag(ρ, p, p, p) = Tµνtotal then

mcurv
3/2 =

√
ρ

3MP
(1)

therefore

m3/2 =

√
ρ

3MP
(1− 3

4
εLV) ≤ mcurv

3/2 (2)

in contradiction with our assumption. The equality is reached for the
de Sitter solution corresponding to Tµν = −|F|2ηµν .
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BACK-UP 2
As in the usual F-term Tµνtotal receives a cancelling contribution :

I An approximate cancellation through the addition of a
cosmological constant.
Tµν(total) = Tµν − Ληµν = diag(ρ+ Λ, p− Λ, p− Λ, p− Λ) gives
for Λ = p:

mcurv
3/2

m3/2
=

√
εLV

(1− 3
4εLV)

(3)

which implies εLV � 1. Such a small number is anyway also
expected in phenomenological applications given the strong
experimental limits.

I An exact cancellation can be engineered for the perfect fluid at
rest for arbitrary εLV . A non-dynamical object with negative
tension diag(−ρ− Λ, 0, 0, 0) will be introduced in addition to
the cosmological constant. Such objects appear in string theory
for instance as orientifold, here point-like.
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