<u>Charginos and sleptons direct production searches</u> with 2 leptons, MET and no jets with ATLAS and CMS

Thomas Serre (CPPM, Marseille)

SUSY cross sections (pMSSM)

- R parity conserved = sparticles produce by pairs
- LSP = neutralino 1
- \rightarrow Consider a natural spectrum :
 - higgs naturality : M(\widetilde{g}) ~ 1 TeV, M(\widetilde{t}) ~ 400 GeV
 - Experimental limits : $M(\widetilde{g})$ > 1 TeV, $M(\widetilde{t})$ > 600 GeV
- → Largest XS for charginos/neutralinos
- Light charginos needed in natural scenario
- light sleptons allowed also

- For $M(\widetilde{\chi}_1^{+/-}) = 100 \text{ GeV } \& M(\widetilde{g}) = 1 \text{ TeV}$ $XS(\widetilde{\chi}_1^{+/-}\widetilde{\chi}_1^{+/-}) = 100 * XS(\widetilde{gg}) = (1 - 10) \text{ pb}$

 \rightarrow Low mass charginos can be the first visible SUSY particle at LHC

m_{average} [GeV]

http://arxiv.org/abs/1403.5294

Direct chargino and slepton pair production

→ 3 scenarii considered

<u>Charginos in sleptons</u>

Optimistic scenario (no BR cost thanks to the sleptons)

Direct sleptons

Allowed in pMSSM framework Right and left handed cases

Charginos in W on-shell

Realistic scenario Harder, leptonic BR "a considerable hole in current searches at LHC"arXiv:1309.0528

 \rightarrow Basic selection : exactly 2 OS leptons , jet - veto , $~E_t{}^{miss}$ \rightarrow Main background Dibosons (mostly WW) and top

<u>Selection – 'a la Higgs'</u>

 $\Delta \Phi l, j = \min (\Delta \Phi (MET, l), \Delta \Phi (MET, j))$

- For low mass charginos in W
- Topology close to SM WW and H -> WW
- based on $E_{\tau}^{miss,rel}$ and $p_{\tau}(II)$

- With these cuts :

 $(M(X_1^{+/-}) = 100 \text{ GeV}, M(X_1^{0}) = 0 \text{ GeV})$: 42 events, ee/eµ/µµ S / $\sqrt{B} = 2.5$ with $\Delta B = 15\%$

=> $E_{T}^{miss,rel}$ and $p_{T}(II)$ have a good discrimination power for $M(X_{1}^{+/-}) < 120 \text{ GeV}$

- For high mass charginos in W and in sleptons, direct sleptons
- Using high mass of the SUSY particle
- $m_{\mathrm{T2}} = \min_{\mathbf{q}_{\mathrm{T}}} \left[\max\left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} \mathbf{q}_{\mathrm{T}}) \right) \right]$

- With $M_{T2} > 90$ GeV for $X_1^{+/-}$ in W

 $(M(\widetilde{X}_{1}^{+/-}) = 140 \text{ GeV}, M(\widetilde{X}_{1}^{0}) = 20 \text{ GeV})$: 15 events, S / $\sqrt{B} = 2.0$ with $\Delta B = 15\%$ $(M(\widetilde{X}_{1}^{+/-}) = 200 \text{ GeV}, M(\widetilde{X}_{1}^{0}) = 0 \text{ GeV})$: 8 events, S / $\sqrt{B} = 1.3$ with $\Delta B = 15\%$

ATLAS Signal Regions – Chargino with inter. W

<u>Signal Regions – Summary</u>

	U. SK- m_{T_2} and SK-	VV VV	signal region demitic	0118.
Signal region	$SR-m_{T2}(a / b / c)$		SR-WW(b/c)	SR-WWa
$p_T^{\ell 1} > [\text{GeV}]$			35	
$p_T^{\ell_1} > [\text{GeV}]$			20	
charge			OS	
flavour			ее,µµ,еµ	
$ m_{\ell\ell}-m_Z $		>	> 10 for <i>ee</i> and $\mu\mu$	
central light jets			= 0	
signal <i>b</i> -jets			= 0	
signal forward jets			= 0	
$E_{\rm T}^{\rm miss, rel}$ [GeV]		-	-	> 80
$p_{T,ll}$ [GeV]		-	-	> 80
m_{T2} [GeV]	> 90/120/150		> 90/100	-
$m_{\ell\ell}$ [GeV	$20 < m_{\ell\ell}$	20	$0 < m_{\ell\ell} < 170 / \text{ no cut}$	$20 < m_{\ell\ell} < 120$
3 SR for direct sleptons, charginos	s with inter. sleptons		3 SR for charginos wit	h inter. W bosons

Table 10: SP m_{-1} and SP WW signal region definitions

Background treatment

\rightarrow Dominant backgrounds are WW, $t\bar{t}$ and single top, and ZV :

- For them, semi data-driven are performed
- Control regions are built where SF are computed and used to scale MC
- For WW and top, only eµ is used (ee and µµ channels are checked to agree)
- ZV CR with ee and $\mu\mu$ channel

\rightarrow Background in SR-WWa :

- Specific variables : $E_T \stackrel{miss,rel}{,} p_T$ (ll)
- 3 dedicated control regions for each background
- \rightarrow Background in SR-WWb/c, SR-M $_{\rm T2}a/b/c$:
 - 3 common CR, one for each background
- \rightarrow Other backgrounds :
 - Fake leptons coming from light/heavy flavor jets (photons also)
 - Estimated with a matrix method
 - Minor backgrounds, Higgs, VVV, Z+jets estimated by MC only

WW background in SRWWa

\rightarrow WW CR definition

CR	(p_T^{l1}, p_T^{l2}) [GeV]	<i>m</i> _{T2} [GeV]	$E_{\rm T}^{\rm miss,rel}$ [GeV]	$p_{\mathrm{T},\ell\ell}$ [GeV]	$m_{\ell\ell}$ [GeV]
CRWW-WWa	(>35,>20)	_	[60 – 80] GeV	> 40GeV	< 120 GeV

\rightarrow WW CR characteristics

Purity (%)	Signal in CR(%)	TF (%)	SF	
85 ± 2	13 ± 0.5	17.1 ± 1.2	1.22 ± 0.07	

- SF significantly greater than 1
- High purity and low signal contamination
- SF not applied in this plot

→ Good agreement between Data and MC GDR Terascale - Palaiseau

WW background in m_{T2} based region

\rightarrow WW CR definition

\rightarrow WW CR characteristics

purity in %	83.10 ±	1.13	
contamination in %	16.90 ±	1.30	
S	1.145 ±	$0.044 \pm$	0.398

- SF > 1 also in this CR
- SF differences with CRWWa agrees in error bars
- Good purity and low signal contamination
 - \rightarrow Good agreement between Data / MC

Background summary

	SR- <i>m</i> _{T2} ,90		SR-m	SR- <i>m</i> _{T2} ,120		SR- <i>m</i> _{T2} ,150	
	ee/µµ	eμ	ee/μμ	eμ	ee/μμ	eμ	
Background							
WW	22.05 ± 4.27	16.18 ± 3.22	3.49 ± 1.29	3.29 ± 1.19	0.98 ± 0.53	0.90 ± 0.46	
ZW or ZZ	12.85 ± 2.23	0.76 ± 0.22	4.94 ± 1.62	0.15 ± 0.08	2.15 ± 0.49	0.03 ± 0.02	
Тор	3.04 ± 1.75	5.53 ± 1.88	$0.33^{+0.36}_{-0.33}$	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	
Others	0.18 ± 0.06	0.78 ± 0.55	0.09 ± 0.03	0.11 ± 0.09	0.07 ± 0.12	0.04 ± 0.03	
Total	38.13 ± 5.09	23.26 ± 3.72	8.86 ± 2.08	3.55 ± 1.20	3.19 ± 0.72	0.96 ± 0.46	
Observed events	33	21	5	5	3	2	
ΔΒ	14	7 %	28.	6 %	35.2	2 %	

	SR-V	SR-WWa		SR-WWb		WC
	ee/μμ	eμ	ee/μμ	eμ	ee/μμ	eμ
Background						
WW	57.75 ± 5.48	58.21 ± 6.03	16.44 ± 2.54	12.30 ± 2.01	10.38 ± 2.65	7.29 ± 1.93
ZW or ZZ	16.31 ± 3.50	1.82 ± 0.48	10.91 ± 1.91	0.56 ± 0.18	9.21 ± 2.12	0.41 ± 0.16
Тор	9.17 ± 3.52	11.55 ± 4.32	2.37 ± 1.68	4.31 ± 1.60	$0.62^{+1.15}_{-0.62}$	0.94 ± 0.83
Others	3.3 ± 1.31	2.01 ± 1.1	0.32 ± 0.31	0.91 ± 0.56	0.12 ± 0.04	0.40 ± 0.32
Total	86.53 ± 7.36	73.60 ± 7.91	30.04 ± 3.53	18.07 ± 2.60	20.34 ± 3.54	9.04 ± 2.19
Observed events	73	70	26	17	10	11
ΔΒ	9.6	S %	13.	1 %	20.	8 %

 $\rightarrow\,$ No excess observed, a slight deficit in SF channel

Direct chargino and slepton pair production

 \rightarrow 2 scenarii considered

CMS

 \rightarrow Basic selection : exactly 2 leptons , jet - veto , $~E_{T}^{miss}$

CMS

<u>Selection - M_{CT}</u>

- End point at m(W) for SM background, high value tail for SUSY processes
- $M_{CT}^2 = m^2(\mathbf{v}_a) + m^2(\mathbf{v}_b) + 2 \left[E_T(\mathbf{v}_a) E_T(\mathbf{v}_b) + \mathbf{p}_T(\mathbf{v}_a) \cdot \mathbf{p}_T(\mathbf{v}_b) \right]$
- Take components perpendicular to the recoil direction of the system

CMS

Background treatment

- \rightarrow Dominant backgrounds are WW, tt, single top, and ZV :
 - Similar approch as ATLAS
 - Template built in control regions then normalized to data with a fit
 - For ZV and top, independent control regions

\rightarrow WW

- using a 3 lepton $% \left({{{\rm{control}}} \left({{{\rm{control}}} \right.} \right)$ dominated with WZ
- Four momentum of 1 lepton is added to the MET
- WW simulation validated with this template

\rightarrow Background in SR

- Binned fit from 10 to 120 GeV in $M_{\rm CT}$
- Extrapolated in $M_{CT} > 120 \text{ GeV}$ (signal region)

Sampla	Opposit	e flavor	Same flavor		
Sample	$M_{\rm CT\perp}$ 10–120 GeV	$M_{\rm CT\perp} > 120 { m GeV}$	$M_{\rm CT\perp}$ 10–120 GeV	$M_{\rm CT\perp} > 120 {\rm GeV}$	
Top quark	3770 ± 90	< 0.4	2770 ± 110	0.35 ± 0.10	
Diboson and rare SM	1430 ± 110	4 ± 3	1240 ± 90	9 ± 3	
Z/γ^*	57 ± 25	< 0.01	700 ± 240	0.6 ± 0.3	
Non-prompt	< 81	< 0.01	659 ± 77	< 0.5	
Total	5260 ± 130	4 ± 3	5370 ± 100	10 ± 3	
Data	5309	5	5388	5	

ATLAS & CMS Limits on direct $\chi_1^{\pm/-}$ with inter. sleptons

 \rightarrow Interpretation in simplified models

- All SUSY particles decoupled except charginos and sleptons

- BR of 100 % for chargino in slepton

→ Exclusion of chargino in sleptons up to $M(\chi) > 550 \text{ GeV}$

<u>Limits on direct sleptons</u>

→ Sleptons excluded up to 250 GeV (left handed) and 300 GeV (right handed)

ATLAS

Limits on direct chargino with inter. W

\rightarrow Interpretation in simplified models

 \rightarrow Excluding chargino up to 180 GeV with massless neutralinos \rightarrow Several points excluding with massive neutralinos

pMSSM Limits with light sleptons

- Reinterpretation in pMSSM models

$M1 = 100 \text{ GeV}, \tan\beta = 6$

$M1 = 140 \text{ GeV}, \tan\beta = 6$

$M_1 = 250 \text{ GeV}, \tan \beta = 6, \ m(\widetilde{l}_{B}) = [m(\widetilde{\chi}_1^0) + m(\widetilde{\chi}_2^0)]/2$ $M_1 = 140 \text{ GeV}, \tan \beta = 6, m(I_p) = [m(\widetilde{\chi}^{U}_{\gamma}) + m(\widetilde{\chi}^{U}_{\gamma})]/2$ $M_1 = 100 \text{ GeV}, \tan \beta = 6, m(\tilde{l}_p) = [m(\tilde{\chi}_1^0) + m(\tilde{\chi}_2^0)]/2$ M⁵⁰⁰ W² (GeV) W² 450 -----ATLAS, [Ldt = 20.3 fb⁻¹, Vs = 8 TeV ATLAS, [Ldt = 20.3 fb⁻¹, vs = 8 TeV χ_1 (150 GeV) ATLAS, | Ldt = 20.3 fb⁻¹, \s = 8 TeV Observed limit (±1 σ^{SUSY}_{theory}) (150 GeV) Observed limit (±1 σ^{SUSY}theory) Observed limit (±1 σ^{SUSY} Expected limit $(\pm 1 \sigma_{exp})$ Expected limit ($\pm 1 \sigma_{exp}$) Expected limit ($\pm 1 \sigma_{exp}$) ATLAS 4.7 fb⁻¹, vs= 7 TeV - ATLAS 4.7 fb⁻¹, √s= 7 TeV - ATLAS 4.7 fb⁻¹, √s= 7 TeV 400 400 400 All limits at 95% CL All limits at 95% CL All limits at 95% CL $\tilde{\chi}_1^{\pm}$ (150 GeV) $\overline{\chi}_1^0$ (125 GeV) (90 GeV) 350 350 350 (250 Gel) X1 (135 300 300 300 7,0 GeV) χ[±] (250 GeV) χ. (250 GeV) 2 (300 Ge) 250 250 250 (350 χ⁰ (220 GeV) 200 200 200 $\tilde{\chi}^{\pm}$ (150 GeV) 1FP2 LED. ·FD. 150 150 150 100 100 100 100 150 200 250 300 350 400 450 500 250 150 200 300 350 400 450 500 150 200 250 300 350 400 450 500 100 μ[GeV] μ [GeV] μ[GeV]

\rightarrow Large improvements compared to LEP results

M1 = 250 GeV. $tan\beta = 6$

pMSSM Limits with light charginos

- Reinterpretation in pMSSM models

Conclusion

- - \rightarrow Overview of the analysis done at ATLAS and CMS
 - \rightarrow Final exclusion with 8 TeV data set
 - \rightarrow No excess has been found compared to SM prediction
- \rightarrow Interpretation in several models
 - \rightarrow Exclusion settled for chargino and sleptons production
 - \rightarrow First LHC exclusion of chargino with intermediate W !
 - \rightarrow Simplified model and pMSSM
- \rightarrow Perspectives
 - \rightarrow Goal is now to setup analysis for 14 TeV

BACK UP

ZV background in SRWWa

\rightarrow ZV CR definition

CR	(p_T^{l1}, p_T^{l2}) [GeV]	m_{T2} [GeV]	$E_{\rm T}^{\rm miss,rel}$ [GeV]	$p_{\mathrm{T},\ell\ell}$ [GeV]	$m_{\ell\ell}$ [GeV]
CRZV-WWa	(>35,>20)	—	>80	>80	$ m_{\ell\ell} - m(Z) < 10$

\rightarrow ZV CR characteristics

CR	Purity (%)	Signal in CR(%)	TF (%)	SF
CRZV-WWa, ee	81 ± 4	2 ± 0.4	12.0 ± 1.5	1.14 ± 0.16
CRZV-WWa, $\mu\mu$	85 ± 2	4 ± 0.6	13.9 ± 1.7	1.12 ± 0.13

- New CR to handle this background for ee and $\mu\mu$ final state
- Good agreement of SF in both channels, combined in the fit
- Low signal contamination and good purity

\rightarrow Good agreement between Data and MC

GDR Terascale - Palaiseau

Event Selection

\rightarrow Trigger :

Use dilepton triggers

trigger	L1	Offline $p_{\rm T}$ Threshold
EF_2e12Tvh_loose1	L1_2EM10VH	$p_{\rm T}(e_1) > 14 \text{ GeV}, p_{\rm T}(e_2) > 14 \text{ GeV}$
EF_e24vh_medium1_e7_medium1	L1_EM18VH	$p_{\rm T}(e_1) > 25 \text{ GeV}, p_{\rm T}(e_2) > 8 \text{ GeV}$
EF_2mu13	L1_2MU10	$p_{\rm T}(\mu_1) > 14 \text{ GeV}, p_{\rm T}(\mu_2) > 14 \text{ GeV}$
EF_mu18_tight_mu8_EFFS	L1_MU15	$p_{\rm T}(\mu_1) > 18 \text{ GeV}, p_{\rm T}(\mu_2) > 8 \text{ GeV}$
EF_e12Tvh_medium1_mu8	L1_EM10VH_MU6	$p_{\rm T}(e) > 14 \text{ GeV}, p_{\rm T}(\mu) > 8 \text{ GeV}$
EF_mu18_tight_e7_medium1	L1_MU15	$p_{\rm T}(e) > 8 \text{ GeV}, p_{\rm T}(\mu) > 18 \text{ GeV}$

\rightarrow Object definition :

Baseline electrons	Baseline muons				
p _T > 10 GeV, η < 2.47, medium++	p _T > 10 GeV, η < 2.4, STACO	cuts	Central light jets	Central b-jets	Forward jets
			L20	B20	F30
Signal electrons	Signal muons	$p_{\rm T}$ [GeV]	>20	>20	>30
tight++, $d_0 < 5\sigma$,	- d < 3σ	$ \eta_{\rm det} $	<2.4	<2.4	[2.4,4.5]
$ z_0 \sin\theta < 0.4 \text{ mm},$	$ z_0 \sin \theta < 1 \text{ mm}.$	b-tag MV1	≤0.3511	>0.3511	-
$p_T^{\text{coneso}/pT} < 0.16$,	$p_{T}^{cone30}/pT < 0.12$	JVF	$ \text{JVF} > 0 \text{ if } p_{\text{T}} < 50 \text{ GeV}$	-	-
(pile-up corrected)	(pile-up corrected)				

- SUSY Tools 03.04, (version 03.07 tested, no impact on results)

 \rightarrow No change since CONF