DE LA RECHERCHE À L'INDUSTRIE

WIMPS & Axion searches with EDELWEISS

GDR Terascale June 2014

Thibault de Boissière (CEA Saclay)

Outline

- EDELWEISS : introduction
- WIMP searches with EDELWEISS
- Axions in a nutshell
- Axions: new results

EDELWEISS primary goal: WIMP direct detection

 $R \approx 10^{-3}$ events/kg/day

Er: typically ~ keV to ~10keV

 σ = Cross section (Spin independent part dominates with Ge target nuclei)

 Φ = Incoming WIMP flux

N= Target nuclei

We need low thresholds, low backgrounds and high mass targets!

Thibault de Boissière (CEA Saclay)

EDELWEISS Ge bolometers

Q= Ionization yield

0.6

0.4

0.2

- Interdigit Bolometers working underground
 @ LSM, cooled @ 18 mK.
- Simultaneous measurement of Heat (NTD thermometer) and Ionization (Al electrodes)
- Select events in fiducial volume from ionization (segmented electrodes).
- Discriminate events with Q= Eionization / Erecoil
 - **Q=1** for electron recoils (mostly due to gammas and possible axions)
 - **Q=0.3** for nuclear recoils (due to neutrons and possible WIMP candidates)

WIMP search region

140

160

Recoil energy [keV]

180

200

120

EDELWEISS results and prospects

- 1 year, 10 detectors limit from Physics Letters B 702 (2011) 329-335. $\sigma = 4.4 \times 10^{-8}$ pb at 85 GeV
- Also shown are the dedicated low-mass analysis results from Phys. Rev. D 86, 051701 (R) (2012)
- EDW III (40 detectors of 800g) is in commissionning. Goals: 12 t.d (1.2 t.d @ low masses) σ=10⁻⁹ pb
- Long term project: EURECA, a next-generation experiment
 focus on low mass WIMPs 5-15 GeV.
 - Goal: reach solar neutrino limit (⁸B)
 - cooperation with superCDMS

EDELWEISS III status: 36 detectors!

Electronic recoil and axions

- EDW is also sensitive to electronic recoils down to 2.5 keV
- Excellent electron recoil background at low energies (use fiducial volume discrimination)
- Axions can generate an electronic recoil: we can detect or constrain axions

Axions in a nutshell

- Axions are elementary particles first theorized by Peccei and Quinn to solve the strong CP problem
- $L = \left(\overline{\Theta} \frac{\phi_A}{f_A}\right) \frac{\alpha_s}{8\pi} G^{\mu\nu a} \tilde{G}^a_{\mu\nu}$
- In this framework, axions interact with SM particles: there are model dependent couplings.

Axion field and decay constant

Axions, being charge-neutral and weakly interacting, are also a prime candidate to explain dark matter in the Universe

We work with **effective couplings**:

Axion nucleon	Axion electron	Axion photon
coupling	coupling	coupling
${oldsymbol{\mathcal{G}}}_{aN}$	g _{ae}	$g_{a\gamma}$

Axion searches: sources

1) The sun: many production channels

- 1. Primakoff production: $\gamma \to A$ in the presence of charged particles $(g_{A\nu})$
- 2. Nuclear magnetic transition of ⁵⁷Fe nuclei: ⁵⁷Fe^{*} \rightarrow ⁵⁷Fe + A (g_{AN})
- 3. Compton-like scattering: $e^- + \gamma \rightarrow e^- + A \quad (g_{Ae})$
- 4. Axion bremsstrahlung: $e^- \rightarrow e^- + A$ in the presence of charged particles (g_{Ae})
- 5. Axio-recombination: $e^- + I \rightarrow I^- + A$ where I is an ion (\boldsymbol{g}_{Ae})
- 6. Axio-deexcitation: I* \rightarrow I + A where I* is an excited state of I (g_{Ae})

2) Dark matter: assume axions form part of dark matter.

Solar axion : Fluxes

B: Bremsstrahlung RD: Recombination-Deexcitation Coupling values are arbitrary

Axion detection: Primakov effect

Typical transferred momentum has wavelength close to interatomic spacing.

A Bragg pattern arises \Rightarrow strong enhancement of the signal.

Axion detection: Axio-electric effect

Axion searches with EDW: 4 channels

Production	Detection	
Solar Primakov $g_{A\gamma}$	$g_{A\gamma}$ Primakov (Bragg scattering)	
Solar Compton Bremsstrahlung g_{Ae}	g_{Ae} Axio electric effect	
Solar ⁵⁷ Fe deexcitation g_{AN}	g_{Ae} Axio electric effect	
Assume axion (with mass m _a) make up all of galactic dark matter	g_{Ae} Axio electric effect	

Axion search: solar Primakov axions

• Only one coupling: $g_{a\gamma}$

Production: Primakov in the sun

Detection: Primakov in the crystal

Expected count rate over 1 day

Thibault de Boissière (CEA Saclay)

Statistical analysis: time correlation

Build the time correlator: \Rightarrow Obtain $g_{a_{\gamma}}$ at a given CL

$$\chi \propto \sum_{events} R(E,t) - \langle R \rangle$$
 Axion count rate averaged over time

This depends on the azimuthal orientation!

Combine all 10 detectors with unknown orientations:

 \rightarrow MC simulation of the experiment

→ Scan over orientations and possible couplings

 \rightarrow Rule out coupling from the comparison between simulation and real data.

 $g_{av} < 2.13 \times 10^{-9} GeV^{-1}$

Thibault de Boissière (CEA Saclav)

Axion search: solar ⁵⁷Fe axions

• 2 couplings: $g_{Ae} \times g_{AN}$

Production:

⁵⁷Fe deexcitation in the sun

Detection:

Axio-electric effect in the crystal

Axion search: solar C-B-RD axions

• Only one coupling: g_{Ae}

Production:

C-B-RD deexcitation in the sun

Detection: Axio-electric effect in the crystal

Same statistical analysis as before

 $g_{Ae} < 2.56 \times 10^{-11}$

Axion search: Dark Matter axions

10⁻⁹ DAMA Assume axions make up all **KSV**2 of dark matter and have a Solar v mass in the keV range. **10**⁻¹⁰ Axions are **non relativistic**: look for a line at the axion **CDMS** mass in the recoil spectrum _ത^ళ10⁻¹¹ XENON100 CoGeN $g_{Ae} < 1.05 \times 10^{-12}$ 10⁻¹² **EDELWEISS** (@ m_a= 12.5 keV) 10⁻¹³ 20 30 2 3 678910 4 5 m_{A} [keV/c²]

From arXiv:1404.1455

Thibault de Boissière (CEA Saclay)

Model dependent limits: mass exclusion

- Relate coupling to the axion mass within a QCD axion model.
- Deduce exclusion on axion masses

Model independent Limits:

Channel	14.4 $(g_{Ae} \times g_{AN}^{\text{eff}})$	DM (g_{Ae})	C-B-RD (g_{Ae})	$P\left(g_{A\gamma}\right)$
Limit	$< 4.70 \times 10^{-17}$	$< 1.05 \times 10^{-12}$	$< 2.56 \times 10^{-11}$	$< 2.13 \times 10^{-9} \text{ GeV}^{-1}$

=> Mass exclusion (in a given model):

Channel	14.4 $(g_{Ae} \times g_{AN}^{\text{eff}})$	C-B-RD (g_{Ae})	$P(g_{A\gamma})$
KSVZ	$154 \mathrm{eV} < m_A < 14.4 \mathrm{keV}$	$269\mathrm{eV} < m_A < 40\mathrm{keV}$	$5.73 < m_A \lesssim 200 \text{ eV}$
DFSZ	$7.93{\rm eV} < m_A < 14.4~{\rm keV}$	$0.91 \mathrm{eV} < m_A < 80 \mathrm{keV}$	$14.86 < m_A \lesssim 200 \text{ eV}$

Conclusion

- WIMP search with EDELWEISS (EDW):
 - EDWIII all detectors commissionned, goal: $\sigma \approx 10^{-9}$ pb
 - Emphasis on the low mass region
 - EDW III will run until 2016
- EURECA / S-CDMS: goal: probe low-mass regions, reach the coherent neutrino scattering limit.

For the full paper: **JCAP 1311 (2013) 067**

Results for axion searches: A significant part of the parameter space is excluded thanks to the combination of 4 analysis channels.

Primakov axions: Results complementary with CAST at masses above 1eV

C-B-RD* channel: Exclusion over 5 orders of magnitude of the axion mass in the DFSZ model

*Solar Compton-Bremmsstrahlung-Recombination-Deexcitation

