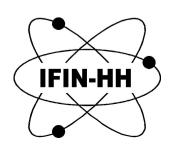


Otilia Ducu (IFIN-HH Bucharest, CPPM)

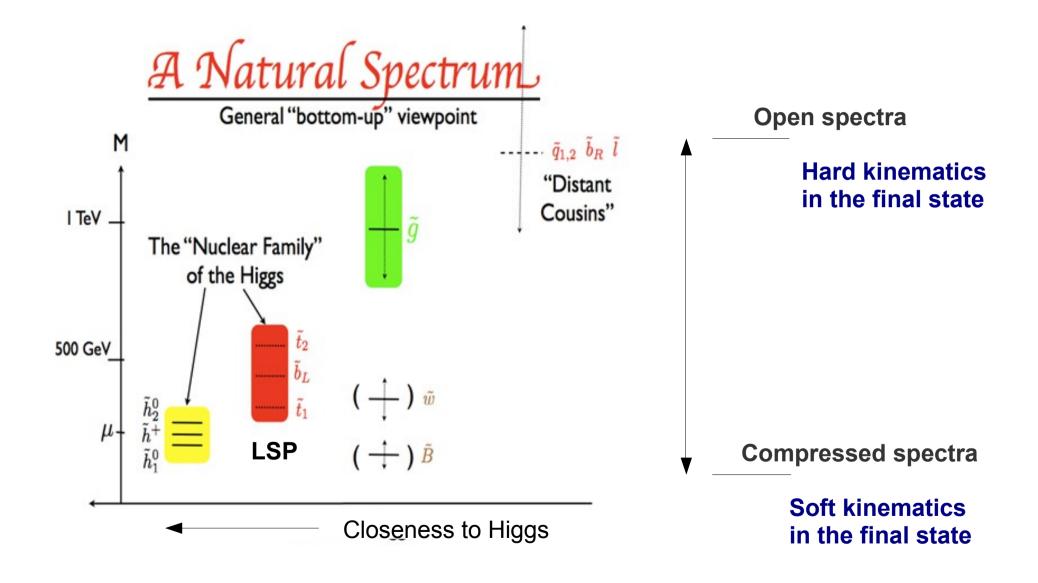
Supervisors : Calin Alexa (IFIN-HH), Pascal Pralavorio (CPPM)


Thanks to: JF Arguin (U. Montreal), David Cote (U. Arlington) and Julien Maurer

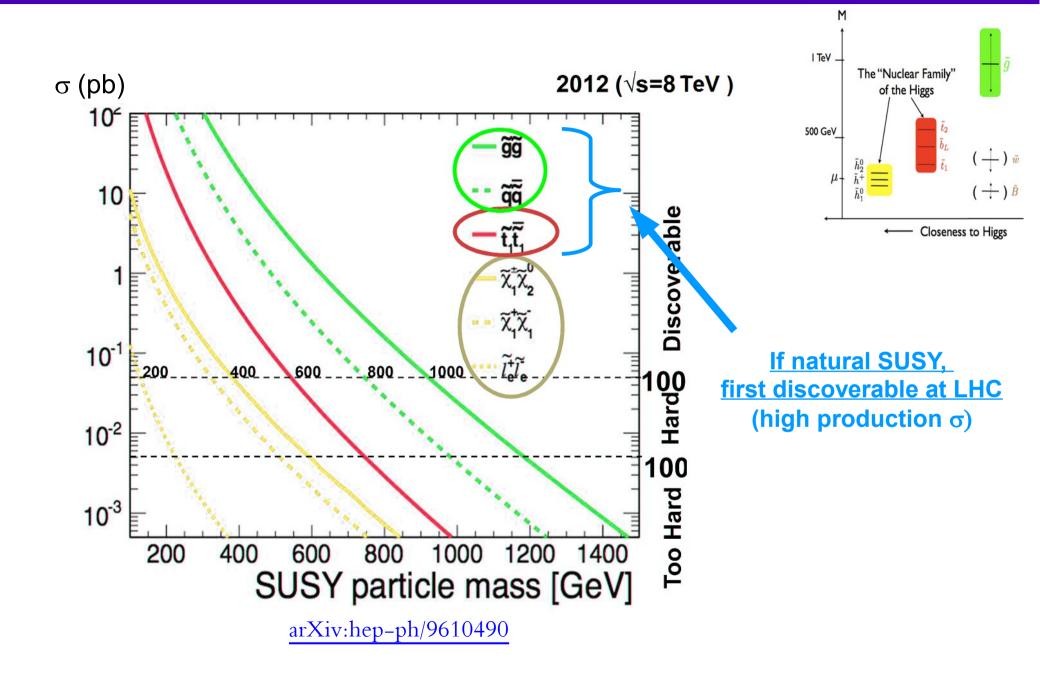
GDR Terascale meeting

2 – 4 June 2014

Overview


/ 21

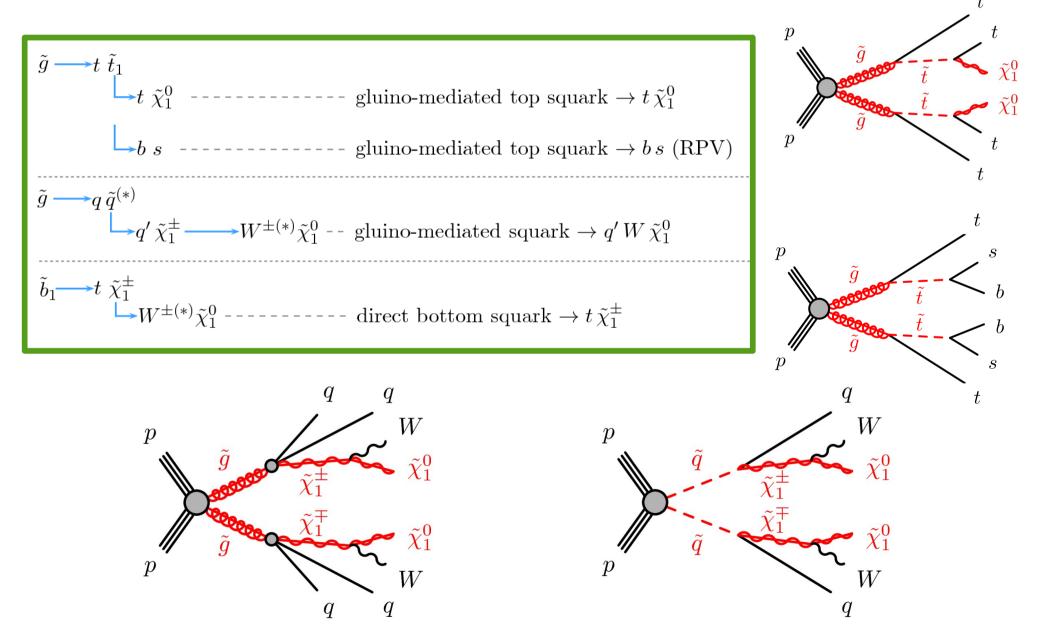
8 TeV, ~ 20 fb⁻¹


- Search for new physics in events with 2 same sign leptons (e or μ), jets and \mathbf{E}_{T}
 - With **ATLAS** detector: arXiv:1404.2500
 - With **CMS** detector: arXiv:1311.6736
- Contents of this talk:
 - A natural SUSY spectrum
 - Searches with same sign leptons \rightarrow motivation
 - Target SUSY models
 - Signal regions definitions
 - Background estimation: techniques and validation
 - Results and interpretation

A natural SUSY spectrum

2/21

A natural SUSY spectrum 3 / 21


Searches with SS leptons, motivations 4 / 21

- Rare signature in Standard Model very low SM background
- Gluinos are Majorana particles $\rightarrow \tilde{g} \rightarrow q \tilde{q}^* / \bar{q} \tilde{q}$ with same probability \rightarrow if there are leptons \rightarrow same probability to have SS or OS signature
- 3rd generation searches, motivated by natural SUSY \rightarrow top quarks in the chain \rightarrow SS leptons, (b-) jets and \mathbf{E}_{T}
- Searches with leptons → smaller BR but
 - can consider looser cuts on jet / lep p_T , m_T , m_{eff} , E_T
 - can reach uncovered regions of the phase space or compressed spectra
- Highly sensitive to new physics beyond Standard Model (not only SUSY)

SUSY models

5 / 21

• To help building signal regions several topologies were considered:

ATLAS: Signal regions definitions

SR	Leptons	N_{b-jets}	Other variables	Additional requirement
				on $m_{\rm eff}$
SR3b	SS or $3L$	≥ 3	$N_{ m jets} \ge 5$	$m_{\rm eff} > 350 {\rm ~GeV}$
SR0b	SS	= 0	$N_{\text{jets}} \ge 3, E_{\text{T}}^{\text{miss}} > 150 \text{ GeV},$ $m_{\text{T}} > 100 \text{ GeV}$	$m_{\rm eff} > 400 {\rm GeV}$
SR1b	SS	≥ 1	$N_{\rm jets} \ge 3, E_{\rm T}^{\rm miss} > 150 \text{ GeV},$ $m_{\rm T} > 100 \text{ GeV}, \text{SR3b veto}$	$m_{\rm eff} > 700 {\rm ~GeV}$
SR3Llow	3L	-	$N_{\text{jets}} \ge 4, 50 < E_{\text{T}}^{\text{miss}} < 150 \text{ GeV},$ Z boson veto, SR3b veto	$m_{\rm eff} > 400 { m GeV}$
SR3Lhigh	3L	-	$N_{\rm jets} \ge 4, E_{\rm T}^{\rm miss} > 150 \text{ GeV}, \text{SR3b veto}$	$m_{\rm eff} > 400 {\rm ~GeV}$

6 / 21

- 5 statistically independent SRs depending on leptons and b-jet multiplicities
- Leptons with $p_T > 15 \text{ GeV}$ (20 for leading lepton)
- Jets with $p_T > 40 \text{ GeV}$; **b-jets with** $p_T > 20 \text{ GeV}$
- \mathbf{E}_{T} , \mathbf{m}_{eff} and \mathbf{m}_{T} main discriminant variables

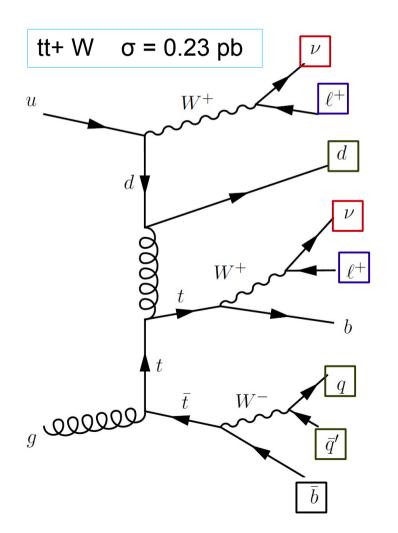
CMS: Signal regions definitions

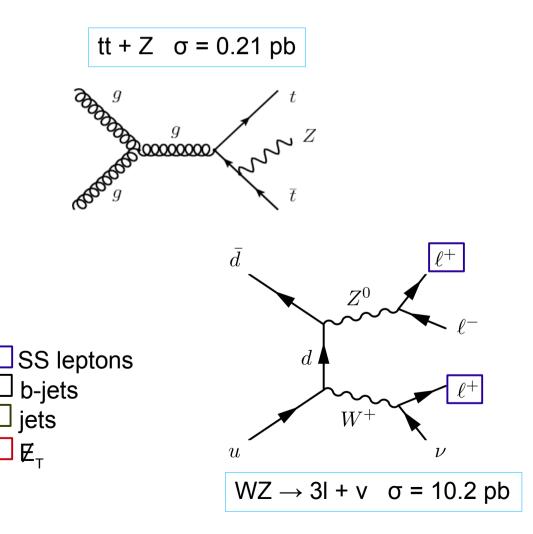
$N_{\rm b\text{-}jets}$	$E_{\rm T}^{\rm miss}$ (GeV)	$N_{\rm jets}$	$H_{\rm T} \in [200, 400] \; ({\rm GeV})$	$H_{\rm T} > 400 \; ({\rm GeV})$
	50 - 120	2 - 3	SR01	SR02
= 0	50-120	≥ 4	SR03	SR04
- 0	>120	2–3	SR05	SR06
	>120	≥ 4	$\operatorname{SR07}$	SR08
	50 - 120	2 - 3	SR11	SR12
= 1	50-120	≥ 4	SR13	SR14
	>120	2 - 3	$\mathrm{SR15}$	SR16
	>120	≥ 4	$\operatorname{SR17}$	SR18
	50 - 120	2 - 3	SR21	SR22
> 2	50-120	≥ 4	SR23	SR24
<u> </u>	>120	2-3	SR25	SR26
	/120	≥ 4	SR27	SR28

• (b-) jets with pT > 40 GeV

7/21

• H_{T} and \mathbf{E}_{T} main discriminant variables

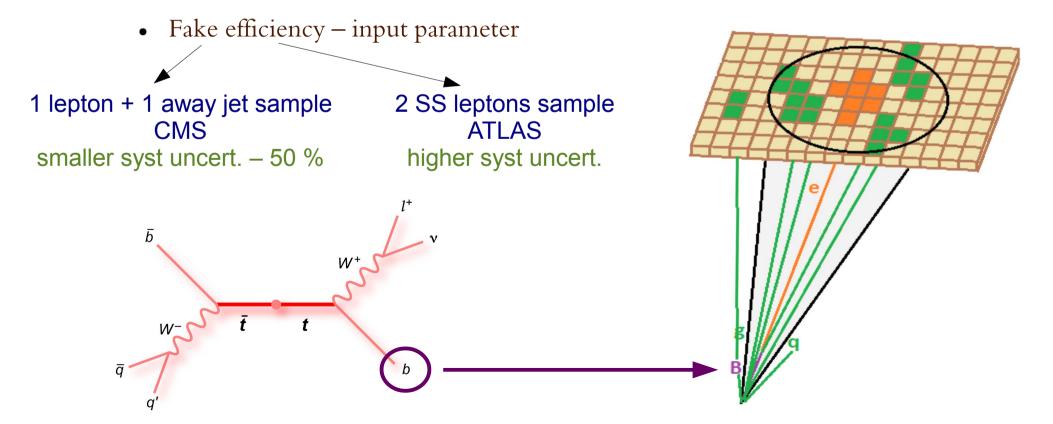

- $p_T > 20$ GeV for leptons in the hard analysis
- For soft analysis leptons p_{T} is lowered to **10** GeV
 - Same 24 SRs with H_T threshold increased to 250 GeV (compressed spectra)
- 2 additional signal regions for RPV model:
 - Here leptons with $p_T > 20 \text{ GeV}$


$N_{\rm jets}$	$N_{\mathrm{b-jets}}$	$E_{\rm T}^{\rm miss}$ (GeV)	$H_{\rm T}~({\rm GeV})$	Lepton charge	SR name
≥ 2	≥ 0	>0	>500	++/	RPV0
≥ 2	≥ 2	>0	>500	++/	RPV2

50 signal regions

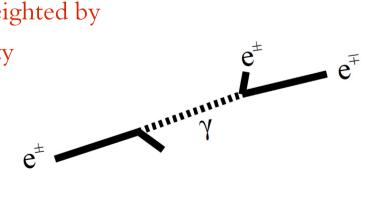
Background classification

- Three main categories:
 - **Prompt leptons background**: tt + W, t + Z, ZZ, WZ, W±W±
 - Estimated from Monte Carlo



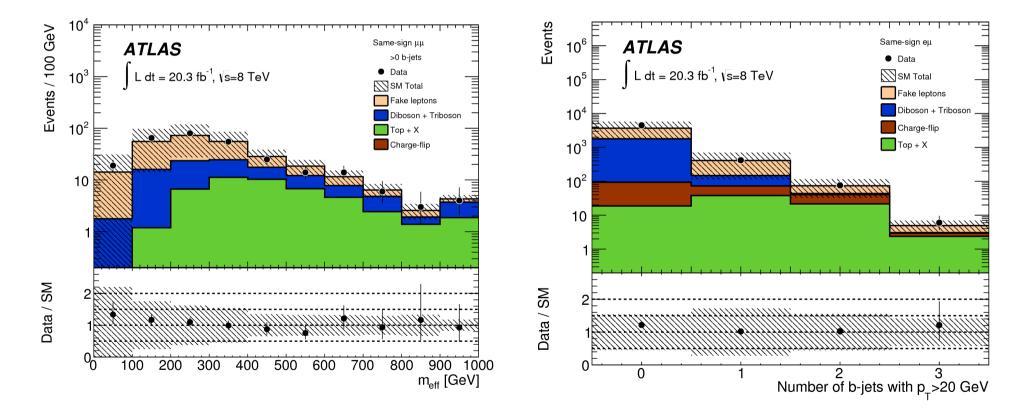
8 / 21

Background classification 8 / 21


- Three main categories:
 - **Prompt leptons background**: tt + V, t + Z, WZ, WW, ZZ
 - Fake lepton background: hadrons misidentified as leptons, leptons from heavy flavor decays, electrons from photon conversions
 - Data driven estimation using : (ATLAS & CMS) a **Tight to Loose** method

Background classification 8 / 21

- Three main categories:
 - **Prompt leptons background**: tt + V, t + Z, WZ, WW, ZZ
 - Fake lepton background: hadrons misidentified as leptons, leptons from heavy flavor decays, electrons from photon conversions
 - Charge flip background: reconstructed electron charge flipped with respect to original electron (not important for muons)
 - CMS: charge flip rate obtained from simulation and validated in data (30% syst)
 - **ATLAS**: fully data driven

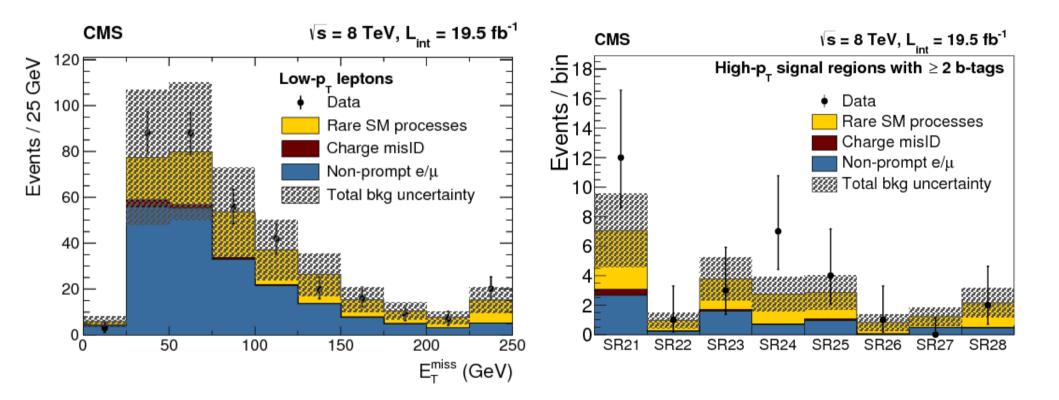

Estimation done with OS data events weighted by η and p_{τ} dependent charge flip probability

Background validation ATLAS

9/21

• Fair agreement between data and Standard Model background in the bkg validation regions for all three channels

Results in the signal regions 10 / 21


- Good agreement between observation and expectation in SR3b, SR3Lep
 - \rightarrow Small excess in SR0b (1.8 σ) and SR1b (1.5 σ) with a combined significance of 2.1

Observed events	SR3b 1	SR0b 14	SR1b 10	SR3L _{low} 6	$\textbf{SR3L}_{\textbf{high}}\;2$
Total expected background events	2.2 ± 0.8	6.5 ± 2.3	4.7 ± 2.1	4.3 ± 2.1	2.5 ± 0.9
p(s=0)	0.50	0.03	0.07	0.29	0.50
Expected signal events	3.4 ± 0.7	24.3 ± 3.5	16.4 ± 3.0	10.6 ± 1.0	5.0 ± 0.8
for chosen benchmark models					
Components of the background					
$t\bar{t}V, t\bar{t}H, tZ$ and $t\bar{t}t\bar{t}$	1.3 ± 0.5	0.9 ± 0.4	2.5 ± 1.7	1.6 ± 1.0	1.3 ± 0.7
Dibosons and tribosons	< 0.1	4.2 ± 1.7	0.9 ± 0.4	1.2 ± 0.6	1.2 ± 0.6
Fake leptons	0.7 ± 0.6	$1.2^{+1.5}_{-1.2}$	$0.8^{+1.2}_{-0.8}$	1.6 ± 1.6	< 0.1
Charge-flip electrons	0.2 ± 0.1	0.2 ± 0.1	0.5 ± 0.1	_	_
Systematic uncertainties					
on expected background					
Fake-lepton background	± 0.6	$^{+1.5}_{-1.2}$	$^{+1.2}_{-0.8}$	± 1.6	< 0.1
Theory unc. on dibosons	< 0.1	± 1.5	± 0.3	± 0.4	± 0.4
Jet and $E_{\rm T}^{\rm miss}$ scale and resolution	± 0.1	± 0.7	± 0.4	± 0.4	± 0.3
Monte Carlo statistics	± 0.1	± 0.5	± 0.2	± 0.4	± 0.4
<i>b</i> -jet tagging	± 0.2	± 0.5	± 0.1	< 0.1	± 0.1
Theory unc. on $t\bar{t}V$, $t\bar{t}H$, tZ and $t\bar{t}t\bar{t}$	± 0.4	± 0.3	± 1.7	± 1.0	± 0.6
Trigger, luminosity and pile-up	< 0.1	± 0.1	± 0.1	± 0.1	± 0.1
Charge-flip background	± 0.1	± 0.1	± 0.1	_	_
Lepton identification	< 0.1	± 0.1	< 0.1	± 0.1	± 0.1

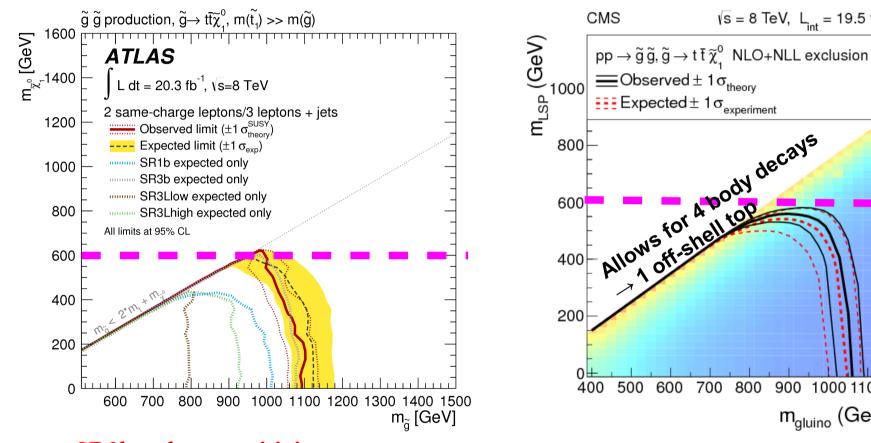
What about CMS ?

11 / 21

• Fair agreement between data and Standard Model background in all baseline and signal reg.

Dorion			Low-j	p_{T}		•	High-	p_{T}	- -			
Region	Ex	spect	ed	Observed	Expected			Observed				
SR01	44	\pm	16	50	51	\pm	18	48				
SR02	12	\pm	4	17	9.0	\pm	3.5	11				
SR03	12	\pm	5	13	8.0	\pm	3.1	5				
SR04	9.1	\pm	3.4	4	5.6	\pm	2.1	2				
SR05	21	\pm	8	22	20	\pm	7	12				
SR06	13	\pm	5	18	9	\pm	4	11				
SR07	3.5	\pm	1.4	2	2.4	\pm	1.0	1				
SR08	5.8	\pm	2.1	4	3.6	\pm	1.5	3				
SR11	32	\pm	13	40	36	\pm	14	29				
SR12	6.0	\pm	2.2	5	3.8	\pm	1.4	5				
SR13	17	\pm	7	15	10	\pm	4	6				
SR14	10	\pm	4	6	5.9	\pm	2.2	2				
SR15	13	\pm	5	9	11	\pm	4	11				
SR16	5.5	\pm	2.0	5	3.9	\pm	1.5	2				
SR17	4.2	\pm	1.6	3	2.8	\pm	1.1	3				
SR18	6.8	\pm	2.5	11	4.0	\pm	1.5	7				
SR21	7.6	\pm	2.8	10	7.1	±	2.5	12				
SR22	1.5	\pm	0.7	1	1.0	\pm	0.5	1				
SR23	7.1	\pm	2.7	6	3.8	\pm	1.4	3				
SR24	4.4	\pm	1.7	11	2.8	\pm	1.2	7				
SR25	2.8	\pm	1.1	1	2.9	\pm	1.1	4				
SR26	1.3	\pm	0.6	2	0.8	\pm	0.5	1				
SR27	1.8	\pm	0.8	0	1.2	\pm	0.6	0				
SR28	3.4	\pm	1.3	3	2.2	±	1.0	2				

What about CMS?


No excess in data above SM expectation

In any of the 50 SRs

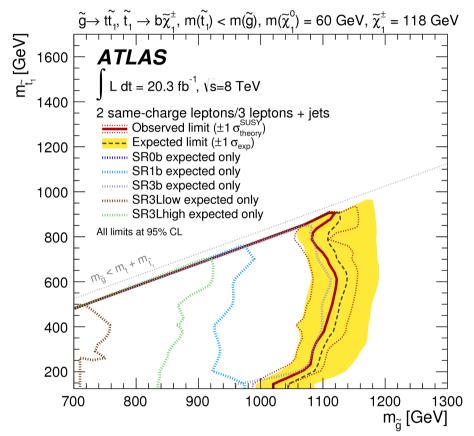
Highest sensitivity in / models with b-jets

Interpretation: model dependent limits 13 / 21

Gluino stop model (t χ^0_1) off – shell

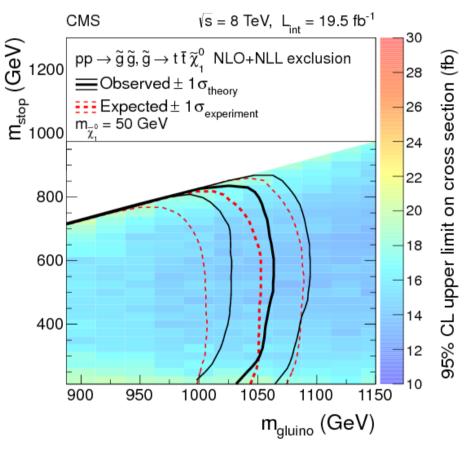
- $SR3b \rightarrow best sensitivity$
 - SR3b \rightarrow SS / 3Lep; Njets > 4

95% CL upper limit on cross section (fb) Allows for A body decays Allows for A body decays 10 900 1000 1100 500 600 700 800 m_{gluino} (GeV) $SR28 \rightarrow best sensitivity$ SR21 - Sr28 : 2 b-tagged jets and high pT leptons $SR28 \rightarrow E_{T} > 120, H_{T} > 400 \text{ GeV}$


 $\sqrt{s} = 8 \text{ TeV}, \ L_{int} = 19.5 \text{ fb}^{-1}$

 10^{3}

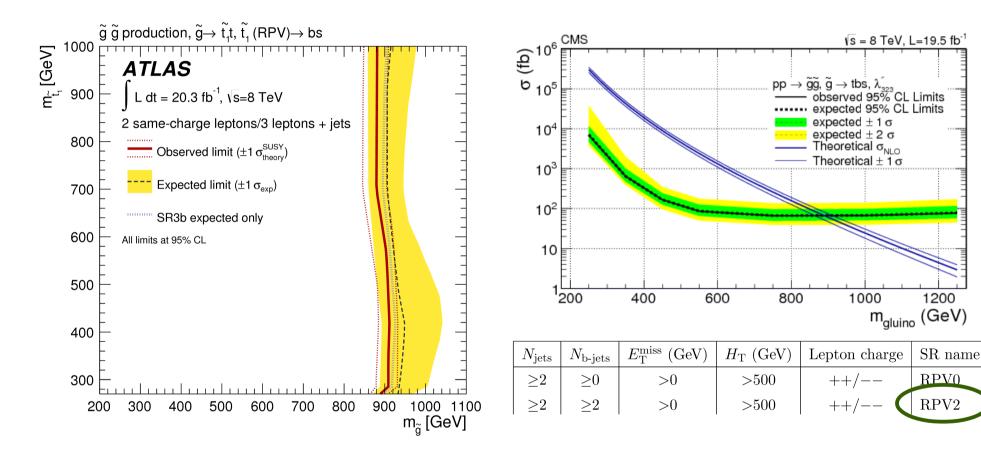
10²


Interpretation: model dependent limits 14 / 21

• Gluino stop model (t χ^0_{1}) on – shell

SR3b → best sensitivity
 <u>Higher sensitivity</u>
 – requiring 3 b–jets is helping (higher reduction of tt + V bkg.)

 SR3b → SS / 3Lep; Njets > 4

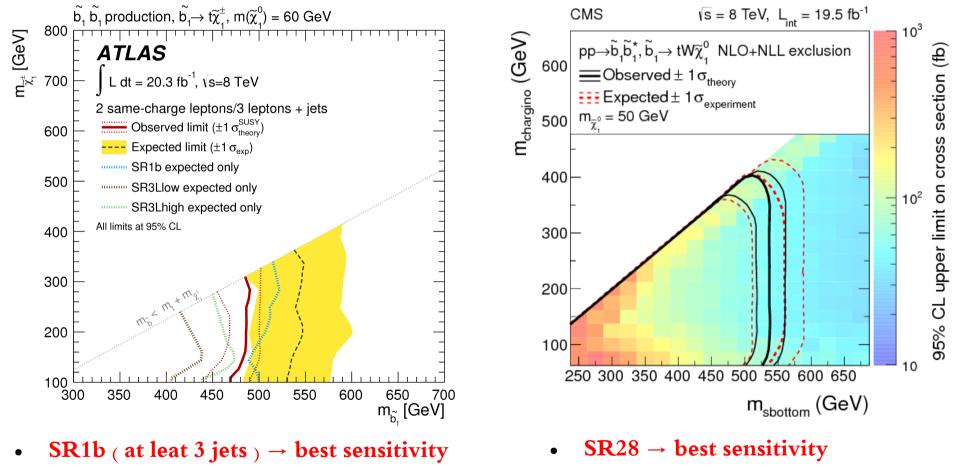


SR28 → best sensitivity
 SR21 - Sr28 : 2 b-tagged jets and high pT leptons

 $\textbf{SR28} \rightarrow \textbf{E}_{T} \textbf{>} \textbf{120}, \, \textbf{H}_{T} \textbf{>} \textbf{400 GeV}$

Interpretation: model dependent limits 15 / 21

• Gluino stop RPV model (stop \rightarrow b s)



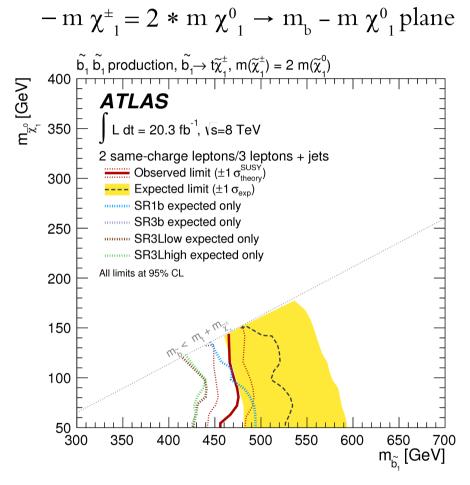
- SR3b \rightarrow SS / 3Lep; Njets > 4
- SR3b \rightarrow best sensitivity no \mathbf{E}_{T} cut Similar sensitivity for ATLAS and CMS
- RPV2 (high $\boldsymbol{p}_{_{T}}$ lep) used to place UL on the production $\boldsymbol{\sigma}$

Interpretation: model dependent limits

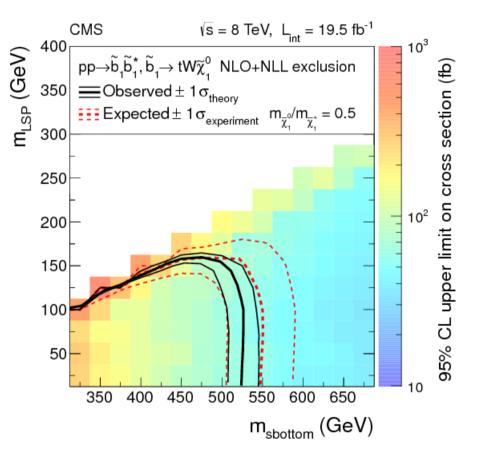
• Direct sbottom model

 $- m \chi_1^0 = 60 / 50 \text{ GeV}, \chi_1^{\pm} \text{ mass is varied} \rightarrow m_b - m \chi_1^{\pm} \text{ plane}$

Worse obs. limits due to the excess in SR1b


slightly better exclusion limits for CMS
 → due to (b-) jets multiplicity

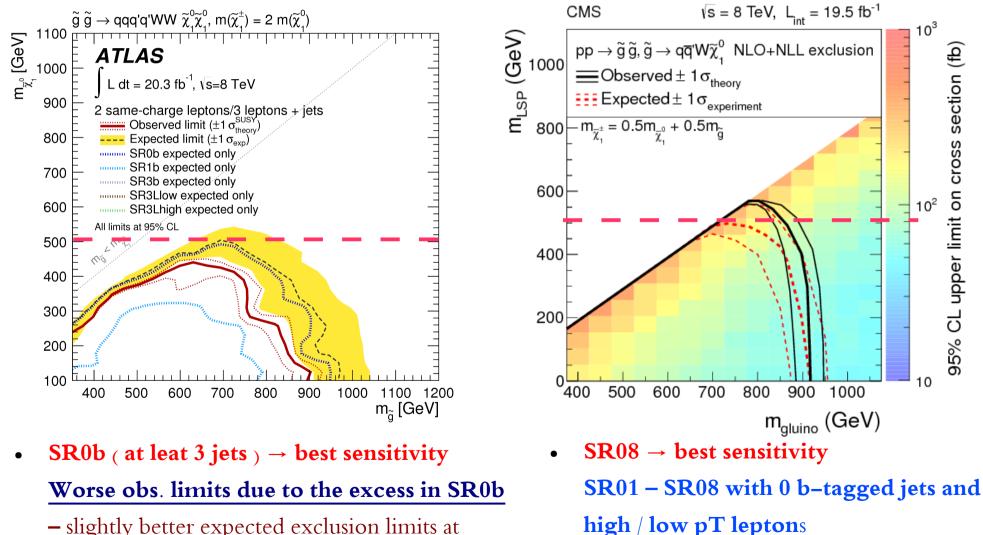
SR28 \rightarrow best sensitivity SR18, SR15 and SR13with 1 b-tagged jet and high pT leptons – at least 4 jets in the event


16 / 21

Interpretation: model dependent limits 17 / 21

• Direct sbottom model

SR1b (at leat 3 jets) → best sensitivity
 Worse obs. limits due to the excess in SR1b
 – slightly better exclusion limits for CMS
 → due to (b-) jets multiplicity



SR28 → best sensitivity
 SR18, SR15 and SR13with 1 b-tagged
 jet and high pT leptons
 – at least 4 jets in the event

Interpretation: model dependent limits 18 / 21

• Gluino mediated first and second generation squarks

 $-m \chi_{1}^{\pm} = 2 * m \chi_{1}^{0} \text{ in ATLAS and } m \chi_{1}^{\pm} = 0.5 * m \chi_{1}^{0} + 0.5 * m_{g} \rightarrow m_{g} - m \chi_{1}^{0} \text{ plane}$

slightly better expected exclusion limits at
 high gluino mass

2 –3 or at least 4 jets in the event

Conclusions

19/21

- Search for new physics in final states with 2 same sign leptons in ATLAS and CMS experiments
 - Low Standard Model background → high sensitivity to BSM physics
 - Charge flip and fake leptons backgrounds are important sources
 (almost half of the total bkg)
- ATLAS CMS comparison: complementary approaches
 - CMS: full scan of the phase space using 50 SRs (soft & hard analyses)
 - ATLAS: few general-purpose SRs, low look-elsewhere effect

Comparing performances on several signal models: generally similar sensitivities

Conclusions

20/21

- Search for new physics in final states with 2 same sign leptons in ATLAS
 - Paper accepted by JHEP : arXiv:1404.2500, link to figures
- Changes wrt. previous version of the analysis in ATLAS:
 - Merge 2 same sign pair with 3 leptons signatures signal region re-optimization
 - Isolation variables optimization for signal leptons
 - Add cross-check methods to validate the charge flip and fake leptons / b-jets bkg.
 - Interpretation: add new models (in total 14 SUSY models and 1 mUED model)
- Other ATLAS public results are here
- Run 2 preparation studies:
 - Improve the background estimation techniques
 - Add control regions to decrease the tt + V / diboson systematic uncertainty
 - Add new models to interpret the results

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: Moriond 2014

ATLAS Preliminary

 $\int \mathcal{L} dt = (4.6 - 22.9) \text{ fb}^{-1} \qquad \sqrt{s} = 7, 8 \text{ TeV}$

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	⁻¹] Mass limit	$\int 2 u = (1.0 - 22.0) $ 10	Reference
Inclusive Searches	$\begin{array}{l} \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \text{MSUGRA/CMSSM} \\ \overline{q}\tilde{q}, \overline{q} \rightarrow q \widetilde{\chi}_{1}^{0} \\ \overline{g}\tilde{g}, \overline{g} \rightarrow q \overline{q} \widetilde{\chi}_{1}^{0} \\ \overline{g}\tilde{g}, \overline{g} \rightarrow q q \widetilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \widetilde{\chi}_{1}^{0} \\ \overline{g}\tilde{g}, \overline{g} \rightarrow q q (\ell \ell / \ell v / v v) \widetilde{\chi}_{1}^{0} \\ \text{GMSB} (\ell \text{ NLSP}) \\ \text{GMSB} (\tilde{\ell} \text{ NLSP}) \\ \text{GGM} (bino \text{ NLSP}) \\ \text{GGM} (bino \text{ NLSP}) \\ \text{GGM} (higgsino-bino \text{ NLSP}) \\ \text{GGM} (higgsino \text{ NLSP}) \\ \text{Gravitino LSP} \end{array}$	$\begin{matrix} 0 \\ 1 \ e, \mu \\ 0 \\ 0 \\ 0 \\ 1 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 1-2 \ \tau \\ 2 \ \gamma \\ 1 \ e, \mu + \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{matrix}$	2-6 jets 3-6 jets 2-6 jets 2-6 jets 3-6 jets 0-3 jets 0-2 jets - 1 b 0-3 jets mono-jet	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 4.7 20.7 20.3 4.8 4.8 5.8 10.5	$ \vec{q}, \vec{g} $	$\begin{split} & m(\bar{q}) = m(\bar{g}) \\ & any \ m(\bar{q}) \\ & any \ m(\bar{q}) \\ & m(\bar{\chi}_1^0) = 0 \ GeV \\ & m(\bar{\chi}_1^0) = 0 \ GeV \\ & m(\bar{\chi}_1^0) < 200 \ GeV, \ m(\bar{\chi}^{\pm}) = 0.5 (m(\bar{\chi}_1^0) + m(\bar{g})) \\ & m(\bar{\chi}_1^0) = 0 \ GeV \\ & tan\beta < 15 \\ & tan\beta < 18 \\ & m(\bar{\chi}_1^0) > 50 \ GeV \\ & m(\bar{\chi}_1^0) > 50 \ GeV \\ & m(\bar{\chi}_1^0) > 50 \ GeV \\ & m(\bar{\chi}_1^0) > 220 \ GeV \\ & m(\bar{\mathcal{H}}) > 200 \ GeV \\ & m(\bar{g}) > 10^{-4} \ eV \end{split}$	ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 1308.1841 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 ATLAS-CONF-2013-062 ATLAS-CONF-2013-089 1208.4688 ATLAS-CONF-2013-026 ATLAS-CONF-2012-014 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-147
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g} \rightarrow b \bar{b} \tilde{\lambda}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_{1}^{+} \end{array}$	0 0 0-1 <i>e</i> , <i>µ</i> 0-1 <i>e</i> , <i>µ</i>	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	\$\tilde{g}\$ 1.2 TeV \$\tilde{g}\$ 1.1 TeV \$\tilde{g}\$ 1.34 TeV \$\tilde{g}\$ 1.3 TeV	$\begin{array}{l} m(\tilde{\chi}_{1}^{0}) \!<\!\! 600 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) <\!\! 350 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) \!<\!\! 400 \mathrm{GeV} \\ m(\tilde{\chi}_{1}^{0}) \!<\!\! 300 \mathrm{GeV} \end{array}$	ATLAS-CONF-2013-061 1308.1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
3 rd gen. squarks direct production	$ \begin{array}{c} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{+} \\ \tilde{i}_{1}\tilde{i}_{1}(\text{light}), \tilde{i}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}(\text{light}), \tilde{i}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}(\text{medium}), \tilde{i}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}(\text{medium}), \tilde{i}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}(\text{heavy}), \tilde{i}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}(\text{heavy}), \tilde{i}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{i}_{1}\tilde{i}_{1}(\text{natural GMSB}) \\ \tilde{i}_{2}\tilde{i}_{2}, \tilde{i}_{2} \rightarrow \tilde{i}_{1} + Z \end{array} $	$\begin{array}{c} 0\\ 2 \ e, \mu \ (\text{SS})\\ 1-2 \ e, \mu\\ 2 \ e, \mu\\ 2 \ e, \mu\\ 0\\ 1 \ e, \mu\\ 0\\ 1 \ e, \mu\\ 3 \ e, \mu \ (Z) \end{array}$	2 b 0-3 b 1-2 b 0-2 jets 2 jets 2 b 1 b 2 b ono-jet/c-ta 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\chi}_{1}^{0}){<}90~GeV \\ & m(\tilde{\chi}_{1}^{\pm}){=}2~m(\tilde{\chi}_{1}^{0}) \\ & m(\tilde{\chi}_{1}^{0}){=}55~GeV \\ & m(\tilde{\chi}_{1}^{0}){=}55~GeV \\ & m(\tilde{\chi}_{1}^{0}){=}1~GeV \\ & m(\tilde{\chi}_{1}^{0}){=}1~GeV \\ & m(\tilde{\chi}_{1}^{0}){=}0~GeV \\ & m(\tilde{\chi}_{1}^{0}){=}0~GeV \\ & m(\tilde{\chi}_{1}^{0}){=}0~GeV \\ & m(\tilde{\chi}_{1}^{0}){=}0~GeV \\ & m(\tilde{\chi}_{1}^{0}){=}15~GeV \\ & m(\tilde{\chi}_{1}^{0}){=}150~GeV \\ & m(\tilde{\chi}_{1}^{0}){=}150~GeV \\ & m(\tilde{\chi}_{1}^{0}){=}150~GeV \\ & m(\tilde{\chi}_{1}^{0}){=}200~GeV \end{split}$	1308.2631 ATLAS-CONF-2013-007 1208.4305, 1209.2102 1403.4853 1403.4853 1308.2631 ATLAS-CONF-2013-037 ATLAS-CONF-2013-024 ATLAS-CONF-2013-068 1403.5222 1403.5222
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,\mathbf{k}}\tilde{\ell}_{L,\mathbf{k}},\tilde{\ell} \rightarrow \ell\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-},\tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}Z\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{0} \end{array} $	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ 1 e,μ	0 0 - 0 0 2 <i>b</i>	Yes Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{split} & m(\tilde{\chi}_{1}^{0}){=}0GeV \\ & m(\tilde{\chi}_{1}^{0}){=}0GeV,m(\tilde{\ell},\tilde{r}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{0}){=}0GeV,m(\tilde{\tau},\tilde{r}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ & =\!\!m(\tilde{\chi}_{2}^{0}),m(\tilde{\chi}_{1}^{0}){=}0,m(\tilde{\ell},\tilde{r}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ & m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}),m(\tilde{\chi}_{1}^{0}){=}0,sleptons\;decoupled \\ & m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}),m(\tilde{\chi}_{1}^{0}){=}0,sleptons\;decoupled \end{split}$	1403.5294 1403.5294 ATLAS-CONF-2013-028 1402.7029 1403.5294, 1402.7029 ATLAS-CONF-2013-093
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^+$ Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, ,$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 22.9 15.9 4.7 20.3	$\tilde{\chi}_{1}^{\pm}$ 270 GeV \tilde{g} 832 GeV $\tilde{\chi}_{1}^{0}$ 475 GeV $\tilde{\chi}_{1}^{0}$ 230 GeV \tilde{q} 1.0 TeV	$\begin{split} & m(\tilde{\chi}_1^{\pm})\text{-}m(\tilde{\chi}_1^0) \text{=} 160 \; MeV, \; \tau(\tilde{\chi}_1^{\pm}) \text{=} 0.2 \; ns \\ & m(\tilde{\chi}_1^0) \text{=} 100 \; GeV, \; 10 \; \mu \text{s}{<}\tau(\tilde{g}){<} 1000 \; s \\ & 10{<}tan\beta{<}50 \\ & 0.4{<}\tau(\tilde{\chi}_1^0){<}2 \; ns \\ & 1.5 < c\tau{<}156 \; mm, \; BR(\mu){=}1, \; m(\tilde{\chi}_1^0){=} 108 \; GeV \end{split}$	ATLAS-CONF-2013-069 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
NAR	$ \begin{array}{l} LFV pp \rightarrow \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} \rightarrow e + \mu \\ LFV pp \rightarrow \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} \rightarrow e(\mu) + \tau \\ Bilinear \ RPV \ CMSSM \\ \tilde{\lambda}_{1}^{+} \tilde{\lambda}_{1}^{-}, \tilde{\lambda}_{1}^{+} \rightarrow W \tilde{\lambda}_{1}^{0}, \tilde{\lambda}_{1}^{0} \rightarrow e e \tilde{\nu}_{\mu}, e \mu \tilde{\nu}_{e} \\ \tilde{\lambda}_{1}^{+} \tilde{\lambda}_{1}^{-}, \tilde{\lambda}_{1}^{+} \rightarrow W \tilde{\lambda}_{1}^{0}, \tilde{\lambda}_{1}^{0} \rightarrow \tau \tau \tilde{\nu}_{e}, e \tau \tilde{\nu}_{\tau} \\ \tilde{g} \rightarrow q q \\ \tilde{g} \rightarrow \tilde{t}_{1} t, \tilde{t}_{1} \rightarrow b s \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu (\text{SS}) \end{array}$	- 7 jets - - 6-7 jets 0-3 b	- Yes Yes Yes - Yes	4.6 4.7 20.7 20.7 20.3 20.7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} \lambda_{311}'=0.10, \lambda_{132}=0.05 \\ \lambda_{311}'=0.10, \lambda_{1(2)33}=0.05 \\ m(\tilde{q})=m(\tilde{g}), c\tau_{LSP}<1 \text{ mm} \\ m(\tilde{\chi}_{1}^{0})>300 \text{ GeV}, \lambda_{121}>0 \\ m(\tilde{\chi}_{1}^{0})>80 \text{ GeV}, \lambda_{133}>0 \\ \text{BR}(t)=\text{BR}(b)=\text{BR}(c)=0\% \end{array}$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-036 ATLAS-CONF-2013-036 ATLAS-CONF-2013-091 ATLAS-CONF-2013-007
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	$ \begin{array}{c} 0\\ 2 e, \mu (SS)\\ 0 \end{array} $	4 jets 2 <i>b</i> mono-jet	- Yes Yes	4.6 14.3 10.5	sgluon 100-287 GeV sgluon 350-800 GeV M* scale 704 GeV	incl. limit from 1110.2693 $m(\chi)$ <80 GeV, limit of<687 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147
		$\sqrt{s} = 8$ TeV artial data	$\sqrt{s} = \delta$ full of	8 TeV data		10 ⁻¹ 1	Mass scale [TeV]	

Back-up

MSSM a.k.a Weak Scale SUSY : 29 sparticles + 4 Higgs undiscovered

22

¹21 scalars + 5 Majorana + 3 others fermions

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates
Higgs bosons	0	+1	$H^0_u \; H^0_d \; H^+_u \; H^d$	$h^0~H^0~A^0~H^\pm$
			$\widetilde{u}_L \widetilde{u}_R \widetilde{d}_L \widetilde{d}_R$	(same)
squarks	0	-1	$\widetilde{s}_L \widetilde{s}_R \widetilde{c}_L \widetilde{c}_R$	(same)
			$\widetilde{t}_L \widetilde{t}_R \widetilde{b}_L \widetilde{b}_R$	$\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$
			$\widetilde{e}_L \widetilde{e}_R \widetilde{ u}_e$	(same)
sleptons	0	-1	$\widetilde{\mu}_L \ \widetilde{\mu}_R \ \widetilde{ u}_\mu$	(same)
			$\widetilde{ au}_L \ \widetilde{ au}_R \ \widetilde{ u}_ au$	$\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ au}_{ au}$
neutralinos	1/2	-1	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \ \widetilde{N}_2 \ \widetilde{N}_3 \ \widetilde{N}_4$
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	\widetilde{C}_1^\pm \widetilde{C}_2^\pm
gluino	1/2	-1	\widetilde{g}	(same)
goldstino (gravitino)	$\frac{1/2}{(3/2)}$	-1	\widetilde{G}	(same)

Common object definitions

23

Representative object definitions used by the ATLAS SUSY Working Group

- 1. <u>Jets</u>: Built from calorimeter clusters using the anti- k_t association scheme with radius parameter R = 0.4, and calibrated to correct for dead material, calorimeter response, pile-up etc. Analyses use jets with $|\eta| < 2.8$ and varying thresholds on p_T and the fraction of tracks originating from the primary vertex (JVF), whereas all jets with $|\eta| < 4.9$ and $p_T > 20$ GeV enter \mathcal{E}_T .
- 2. <u>Muons</u>: Identified as ID tracks combined with MS track segments, with $p_T > 10 \text{ GeV}$ and $|\eta| < 2.4$. "Signal" muons have $p_T > 20 \text{ GeV}$ and have higher object quality and isolation requirements.
- 3. <u>Electrons</u>: Identified as ID tracks combined with calorimeter clusters, with $p_T > 20$ GeV and $|\eta| < 2.47$. "Signal" electrons have $p_T > 25$ GeV and have higher object quality and isolation requirements.
- 4. <u>Photons</u>: Identified on the basis of shower shape in the calorimeter or from conversion tracks, with $p_T > 20$ GeV, $|\eta| < 2.37$ and $(1.52 < |\eta| \text{ or } 1.37 > |\eta|)$. Additional "ambiguity resolution" criteria reduce contamination from electrons. A transverse energy isolation requirement of < 5 GeV is imposed in a narrow cone of $\Delta R < 0.2$.
- 5. <u>Tau jets</u>: Identified using a multivariate discriminator (BDT) taking into account track information and calorimeter shower shapes, with $p_T > 20$ GeV, $|\eta| < 2.5$ and containing 1 or 3 tracks of $p_T > 1$ GeV and with a charge sum of ± 1 .
- 6. <u>b-jets</u>: Identified using multivariate discriminators taking into account impact parameter and secondary vertex information.

Kinematic variables definitions 24

- Exclusive effective mass = scalar sum of the transverse momenta of the N leading jets, X leptons and missing transverse energy
- **Inclusive effective mass** = scalar sum of the transverse momenta of all jets, leptons and missing transverse energy
- **HT** = scalar sum of the transverse momenta of all jets
- $M_J^{\Sigma} = \Sigma m_j^{R=1.0}$ (mass of the composite jet), where $p_T^{R=1.0} > 100$ GeV and $|\eta| < 1.5$ The four momenta of the R = 0.4 jets satisfying pT > 20 GeV and $|\eta| < 2.8$ are used as input to a second iteration of anti- k_T jet algorithm with R = 1.0. The resulting larger objects are denoted as composite jets.
- $\Delta R_{\min} = \min \left(\Delta R(j_1, \ell), \Delta R(j_2, \ell), ..., \Delta R(j_n, \ell) \right)$
- $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss}} (1 \cos(\Delta \phi(\vec{\ell}, \boldsymbol{p}_{\rm T}^{\rm miss}))).$
- $m_{\text{CT}}^2(b\text{-jet}_1, b\text{-jet}_2) = [E_{\text{T}}(b\text{-jet}_1) + E_{\text{T}}(b\text{-jet}_2)]^2 [p_{\text{T}}(b\text{-jet}_1) p_{\text{T}}(b\text{-jet}_2)]^2$

mSUGRA/CMSSM Parameters

- → gravity-mediated SUSY breaking
- *m*₀: mass of scalar particles
- *m*_{1/2}: gaugino masses
- A₀: trilinear Higgs-sfermion-sfermion coupling parameter
- tan β = ν_u/ν_d: ratio of the vacuum expectation values of the two Higgs doublets
- sign of the Higgsino mass parameter μ

GMSB Parameters

- \rightarrow gauge-mediated SUSY breaking
- Λ: SUSY breaking mass scale felt by the low-energy sector
- *M*_{mes}: mass scale of the messenger fields
- N₅: number of SU(5) messenger fields
- C_{grav}: scale factor of the gravitino coupling
- tan β = ν_u/ν_d: ratio of the vacuum expectation values of the two Higgs doublets
- sign of the Higgsino mass parameter μ

NGM

- starts from General Gauge Mediation
- GGM: no specific SUSY mass hierarchy is predicted for colored and uncolored states ⇒ gluinos and squarks can be below the TeV scale = within reach of LHC
- NGM: decouple all sparticles not related to fine-tuning of Higgs sector
 - \Rightarrow light stop and light gluino as only light (relevant) coloured sparticle
- some additional mechanism needed (as in GMSB) to produce "correct" Higgs mass