Fitting the Fermi-LAT GeV excess: on the importance of the propagation of electrons from dark matter

Thomas Lacroix (IAP) Supervisors: Joseph Silk (IAP) & Céline Bœhm (IPPP)

GDR Terascale

4 June 2014

Map of the residual Fits with prompt emission only Diffusion must be taken into account

- GC excess in γ-rays between 0.1 and 10 GeV in Fermi data Fermi-LAT collaboration 2009 Hooper & Linden 2011 Gordon & Macias 2013 Abazajian *et al.* 2014 Daylan *et al.* 2014
- $\bullet\,$ Within region smaller than $10^\circ\times10^\circ$ around the GC
- Spherically symmetric
- Obtained by subtracting known sources and using Fermi models for diffuse emission
- Background modelling debated

Diffusion of electrons and positrons from DM Fitting the Fermi-LAT GeV excess with the leptonic channels

Map of the residual

Fits with prompt emission only Diffusion must be taken into account

Gordon & Macias 2013

Diffusion of electrons and positrons from DM Fitting the Fermi-LAT GeV excess with the leptonic channels Map of the residual Fits with prompt emission only Diffusion must be taken into account

Best fit a priori for prompt emission only for $b\bar{b} \rho \propto r^{-1.2}$, $\langle \sigma v \rangle \sim 2 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$

Data points from Gordon & Macias 2013

Map of the residual Fits with prompt emission only Diffusion must be taken into account

Relatively good fit with mixture of leptons and b quarks

Thomas Lacroix Fermi-LAT GeV excess & DM: importance of electron propagation

Diffusion of electrons and positrons from DM Fitting the Fermi-LAT GeV excess with the leptonic channels Map of the residual Fits with prompt emission only Diffusion must be taken into account

But we're nowhere near a priori with leptons only ...

Diffusion of electrons and positrons from DM Fitting the Fermi-LAT GeV excess with the leptonic channels Map of the residual Fits with prompt emission only Diffusion must be taken into account

- But this is for prompt emission only
- Electrons also by-products of DM annihilations
- Inverse Compton and Bremsstrahlung emissions from e⁺ and e⁻ produced in DM annihilations shouldn't be neglected (Ackermann *et al.* 2013, Cirelli *et al.* 2013) → corrections
- Diffusion must be included to model these emissions
 affects the interpretation of the data!

Diffusion of electrons and positrons from DM Fitting the Fermi-LAT GeV excess with the leptonic channels Map of the residual Fits with prompt emission only Diffusion must be taken into account

Very good fit with leptons only (democratic scenario)

TL, C. Bœhm, J. Silk, arXiv:1403.1987

Semi-analytical method Resolution: halo function

Diffusion-loss equation

$$K\nabla^2 \psi + \frac{\partial}{\partial E} (b_{\text{tot}} \psi) + q = 0 \tag{1}$$

- $\psi(\vec{x}, E)$ cosmic-ray spectrum after propagation
- *K* diffusion coefficient: $K(E) = K_0 \left(\frac{E}{E_0}\right)^{\delta}$ with $E_0 = 1$ GeV
- $b_{tot}(E)$ total energy loss rate (IC, synchrotron, Bremsstrahlung...)
- $q(\vec{x}, E)$ source term $\propto \rho^2$ for DM annihilations

(2)

Spectrum of e^- and e^+ after propagation

$$\psi(\vec{x}, E) = \frac{\kappa}{b_{\text{tot}}(E)} \int_{E}^{\infty} \tilde{I}_{\vec{x}}(\lambda_{\mathrm{D}}(E, E_{S})) \frac{\mathrm{d}n}{\mathrm{d}E}(E_{S}) \,\mathrm{d}E_{S}$$

- κ normalization factor \propto annihilation cross section
- *b*_{tot}(*E*) total energy loss rate
- $\tilde{I}_{\vec{x}}$ halo function \longrightarrow fundamental quantity for diffusion
- $\lambda_{\rm D}(E, E_{\rm S})$ diffusion length
- $\frac{\mathrm{d}n}{\mathrm{d}E}$ injection spectrum

Computing \tilde{I} with Green's functions

$$\tilde{I}_{\vec{x}}(\lambda_{\mathrm{D}}(E,E_{\mathrm{S}})) = \int_{\mathrm{DZ}} \mathrm{d}\vec{x}_{\mathrm{S}} \, G(\vec{x},E;\vec{x}_{\mathrm{S}},E_{\mathrm{S}}) \left(\frac{\rho(\vec{x}_{\mathrm{S}})}{\rho_{\odot}}\right)^2 \tag{3}$$

- $G(\vec{x}, E; \vec{x}_S, E_S) \equiv G(\vec{x}, \vec{x}_S, \lambda_D(E, E_S))$ Green's function
- Trick for steepness of *ρ*: logarithmic steps
- *G* becomes infinitely peaked for $\lambda_D \rightarrow 0$ (i.e. $E \rightarrow E_S$) \implies trick: defining different regimes for *G* (TL, C. Bœhm, J. Silk, arXiv:1311.0139)

Contributions from diffusion Total spectrum Morphology

All contributions of the same order of magnitude

TL, C. Bœhm, J. Silk, arXiv:1403.1987

Contributions from diffusion Total spectrum Morphology

Best fit for democratic annihilation into leptons! $\langle \sigma v \rangle = 0.86 \times 10^{-26} \text{ cm}^3 \text{ s}^{-1}$

Contributions from diffusion Total spectrum Morphology

Fit for $b\bar{b}$ only slightly affected

Thomas Lacroix Fermi-LAT GeV excess & DM: importance of electron propagation

Contributions from diffusion Total spectrum Morphology

Very good fit with only muons and taus (cf. AMS limits on e^+e^- , Bergström *et al.* 2013, Ibarra *et al.* 2014)

Thomas Lacroix Fermi-LAT GeV excess & DM: importance of electron propagation

Contributions from diffusion Total spectrum Morphology

Emission from diffusion extends to $\sim 10^\circ$

TL, C. Bœhm, J. Silk, arXiv:1403.1987

- $\bullet\,$ Morphology of total signal between 3° and 12° close to that of prompt emission
 - \implies compatible with the literature
- Flux much flatter below 3 degrees at 0.1 GeV
 ⇒ may allow one to discriminate between scenario with *bb* and scenario with leptons
- But discrepancies between slopes of the DM profile depending on whether inner 1° is included or not (1.2 vs 1.4) in Daylan *et al.* 2014

Conclusion

- Strong case for DM
- $b\bar{b}$ and prompt emission simplest set-up a priori
- But very important to include all relevant emission processes and diffusion
- $b\bar{b}$ and 30 GeV is not the only possibility: DM can be 10 GeV and annihilate into leptons
- Including emissions of diffused electrons changes interpretation of the excess in terms of DM
- Morphology below $\sim 1^\circ$ can help to discriminate

Thank you for your attention!

Data from Gordon et al., arXiv:1306.5725

Thomas Lacroix Fermi-LAT GeV excess & DM: importance of electron propagation

Data from Gordon et al., arXiv:1306.5725

TL, C. Bœhm, J. Silk, arXiv:1403.1987