Recent Higgs-boson results from ATLAS

G. Marchiori (LPNHE - Paris)

GDR Terascale LLR, 2 June 2014

New results since previous GDR

- brand new results (papers will be publicly soon)
 - new mass measurement from $H \rightarrow ZZ^* \rightarrow 4I$ and $H \rightarrow \gamma\gamma$
 - search for di-Higgs production in γγbb channel
 - 1 more results shown tomorrow by Nicolas Berger
- results shown in winter conferences
 - search for ttH, H→bb (ATLAS-CONF-2014-011)
 - latest update on Higgs boson couplings (ATLAS-CONF-2014-009)
 - $H \rightarrow \tau \tau$ shown tomorrow by Dimitris Varouchas
- recent publications of previous preliminary results, w/ some changes: searches for
 - $H \rightarrow Z\gamma$
 - ZH, Z \rightarrow II, H \rightarrow invisible

<u>Phys. Lett. B 732C (2014), pp. 8-27</u> Phys. Rev. Lett. 112, 201802 (2014)

Higgs boson mass

- measurement possible using high-resolution channels: $H\rightarrow ZZ^*\rightarrow 4I$ ($\sigma_m \sim 1.6-2.4$ GeV) and $H\rightarrow \gamma\gamma$ ($\sigma_m \sim 1.7$ GeV)
- previous result (7+8 TeV): <u>PLB 726, 88</u> (July 2013)
 - $m_H = 125.5 \pm 0.2^{+0.5} 0.6 \text{ GeV}$
 - 2.4σ tension: Δm=2.3^{+0.6}-0.7±0.6 GeV
- changes in new measurement:
 - new e/γ calibration
 - improved e, γ and μ energy scale uncertainties
 - $H \rightarrow \gamma \gamma$: new event classification optimised for best σ_m , independent of model of production
 - H→ZZ*: improved expected statistical uncertainty with 2D likelihood fit

New e/γ calibration

- based on MVA regression
 - input quantities: cluster energy in longitudinal layers of e.m. calorimeter, shower barycenter position (lateral/longitudinal), photon conversion information, ...
 - MVA trained on simulation (samples of e and unconverted/converted γ)
 - 10% better $H \rightarrow \gamma \gamma$ mass resolution expected wrt previous calibration
- in data, additional corrections are applied:
 - before MVA regression:
 - correct calorimeter response for small non-uniformity effects
 - intercalibrate longitudinal layers (e.m. calo = presampler + 3 layers)
 - after MVA regression:
 - correct energy scale with η -dependent factors extracted in-situ from Z \rightarrow ee
- combination with momentum information from inner detector improves resolution by 20% for e with E_T<30 GeV, $|\eta|<1.5$ (relevant for H \rightarrow ZZ* \rightarrow 4I)

e/γ energy scale uncertainties

- uncertainties on energy scale: accuracy of the corrections + effects from residual non-linearities and differences between electron and photon showers
- significantly reduced by full exploitation of large and clean control samples: in 2012 data 5.5M Z \rightarrow ee, 4.3M Z \rightarrow µµ, 34M W \rightarrow ev, 0.2M J/ ψ \rightarrow ee, 0.2M Z \rightarrow II γ
 - E/p (W \rightarrow ev), m_{ee} (Z \rightarrow ee):
 - O(0.1%) corrections for small inhomogeneities (HV, transition regions between calorimeter modules, different gains used in readout)
 - stability of calorimeter response vs time and instantaneous luminosity better than 0.05%, non-uniformity vs φ: 0.4% for |η|<0.8, <0.7% elsewhere
 - E₁/E₂ (Z→μμ)
 - intercalibration of calorimeter layers 1&2: O(2%) corrections, uncertainty 1-1.5% (amount of LAr traversed by muons and accuracy of x-talk simulation)
 - E_{PS} vs E_1/E_2 (Z \rightarrow ee, $W\rightarrow$ ev):
 - relative calibration of pre-sampler, after correcting for material between PS and layer
 1 (probed with unconverted γ's with small E₀). 2-3% uncertainty.
 - E_1/E_2 (Z \rightarrow ee, unconv γ):
 - passive material before ECAL and between PS and layer 1 (accuracy ~5%X₀)
 - electron linearity and photon energy scale checked w/ m_{ee} (J/ $\psi \rightarrow ee$), $m_{II\gamma}$ (Z \rightarrow II γ)

e/γ energy scale uncertainties - some results

Muon momentum scale uncertainties

- main improvement: use of $J/\psi \rightarrow \mu\mu$ to extract momentum scale at low p_T
 - previously only used for systematic uncertainties
- corrections (relative ID/MS scales, energy loss before MS, p_T-dependent resolution corrections) from 9M Z→μμ + 6M J/ψ→μμ decays
 - fits to the $\mu\mu$ invariant mass and of the difference between the momentum measurements in the 2 muon detectors
- 5M $Y \rightarrow \mu\mu$ events used to verify results and systematic uncertainties
- scale corrections: ID <0.1%, MS <0.4%

$H \rightarrow \gamma \gamma$ analysis

- selection: similar to previous publication
 - 2 identified and isolated photons in $|\eta|$ <2.37 (excl. 1.37< $|\eta|$ <1.56), E_{T1}>0.35*m_{γγ} and E_{T2}>0.25*m_{γγ}, 105<m_{γγ}<160 GeV
 - + ϵ ~40%, S_{SM}~400 in 8 TeV data
 - 95k events in 8 TeV data
- event classification
 - new, optimised on MC to minimise σ_{mH} (incl. syst. errors) for a SM Higgs boson
 - ten categories with different $\sigma_{m\gamma\gamma}$ and S/B, based only on photon properties
 - splitting based on:
 - conversion: both unconverted (U), at least one converted (C)
 - pseudorapidity: both $|\eta| < 0.75$ (*central*), ≥ 1 with 1.3< $|\eta| < 1.75$ (*transition*), other (*rest*)
 - p_{Tt} : for central and rest categories, $p_{Tt} < or > 70$ GeV (*low/high* p_{Tt})
 - 20% improvement on σ_{mH} wrt inclusive analysis
- mass measurement
 - S+B fit to $m_{\gamma\gamma}$, yields and B shape parameters floating, S shape parameters=f(m_H)

$H \rightarrow \gamma \gamma$ fit results

- m_H=125.98±0.42±0.28 GeV
 - previous: m_H=126.8±0.2±0.7 GeV
 - total syst error = 40% of previous study
 - dominant source: photon energy scale (0.17-0.55% depending on category)
 - other sources (PV, bkg shape, signal yield, resolution, category migrations) negligible
 - larger stat. error due to 20% smaller μ , μ =1.29±0.30 + statistical fluctuations of σ_m
 - mass shift consistent with expectation from new calibration: -0.45±0.35 GeV (toys, sidebands)

final µ results will be provided soon by dedicated coupling analysis

$H \rightarrow ZZ^* \rightarrow 4I$ analysis

- selection: main differences wrt previous publications
 - cut-based \rightarrow likelihood-based electron ID (2x jet rejection for same efficiency)
 - combined fit of electron E,p for $E_T < 30$ GeV (4% better σ_m in 4e and 2µ2e)
 - far-FSR recovery (1% of events)

overall ϵ ~39% (4µ), 27% (2e2µ), 20% (4e), S_{SM}~16 events in 8 TeV data

- mass measurement
 - 2D fit to m₄ vs BDT (η₄, p_{T4}, matrix-element discriminant), for 110<m₄<140 GeV
 - BDT trained on signal vs ZZ MC
 - matrix-element discriminant = log (ME_{sig}/ME_{ZZ}), computed from lepton momenta using LO matrix elements by MadGraph
 - 2D PDFs from MC (signal, ZZ) or data (reducible bkgs, smaller)
 - bkg yield from theory@NLO (ZZ) or from control regions (reducible)
 - 8% smaller σ_m (stat) expected wrt 1D fit to m_{41}
 - Z-mass constraint (leading pair) improves σ_{m41} by 15%, far+near FSR by 3%

$H \rightarrow ZZ^* \rightarrow 4I$ fit results

- m_H=124.51±0.52±0.04 GeV
 - previous: $m_H = 124.3^{+0.6}_{-0.5}^{+0.5}_{-0.3}$ GeV
 - total syst error = 10% of previous study
 - dominant source: electron energy scale
 - smaller stat. error from 2D fit and larger μ : $\mu = 1.66^{+0.45}_{-0.38}$
 - mass shift consistent with expectation from new electron calibration and E/p combination
 - final µ results will be provided soon by dedicated coupling analysis

Mass combination

- m_H=125.36±0.37±0.18 GeV
 - previous: $m_H=125.5\pm0.2^{+0.5}-0.6$ GeV \Rightarrow small shift, systematic error divided by 3
- $\Delta m_H = 1.47 \pm 0.67$ (stat) ± 0.28 (sys) , 2.0 σ compatibility
 - previous: $\Delta m_H = 2.3^{+0.6}_{-0.7} \pm 0.6 \text{ GeV}$, 2.4 σ compatibility
- combined signal strength at measured mass: $\mu = 1.35 \pm 0.24$
 - γγ: 1.25±0.29, ZZ*: 1.48±0.35
 - m_H changes by only 90 MeV when fixing μ =1

Systematic	Uncertainty on m_H (MeV)
LAr syst on material before presampler (barrel)	70
LAr syst on material after presampler (barrel)	20
LAr electronics non-linearity (layer 2)	60
LAr electronics non-linearity (layer 1)	30
LAr layer calibration (barrel)	50
Lateral shower shape (conv)	50
Lateral shower shape (unconv)	40
Presampler energy scale (barrel)	20
ID material model ($ \eta < 1.1$)	50
$H \rightarrow \gamma \gamma$ background model (unconv rest low p_{Tt})	40
$Z \rightarrow ee$ calibration	50
Primary vertex effect on mass scale	20
Muon momentum scale	10
Remaining systematic uncertainties	70
Total	180

Higgs results from ATLAS

Search for double-Higgs production in $\gamma\gamma$ bb

- in SM, rate much smaller than single Higgs (box diagrams + self-coupling)
 - not observable at LHC Run1
- BSM, possible enhancements, e.g.
 - 2HDM: from heavier Higgs decays (H \rightarrow hh), σ as high as 1 pb
 - composite models: from direct tthh vertex
- two searches based on full 8 TeV dataset (20.3 fb⁻¹)
 - "non-resonant": cut on $m_{bb} \sim m_H$, search for peak in $m_{\gamma\gamma}$ spectrum near m_H
 - "resonant": cut on m_{bb} , $m_{\gamma\gamma}$ ~ m_H , count events in sliding-window in $m_{\gamma\gamma bb}$
- main backgrounds:
 - continuum (mostly di-photon+jets), modelled with data
 - single-Higgs production, modelled with MC + theoretical xsection and BF
- selection: 2γ passing same requirements as H→γγ, ≥2 jets (|η|<2.5, p_T>55-35 GeV) b-tagged (ε_b~70%), 95<m_{jj}<135 GeV (σ_{mjj}~13 GeV)

Search for double-Higgs production in yybb

• non-resonance search:

- fit to m_{γγ} in 105-160 GeV range in signal (≥2 bjets) and bkg (<2 b-jets) control region
 - continuum shape from data, single-h and hh from MC
- expected yield in $\pm 2\sigma_{m\gamma\gamma}$ from SM = 1.5
 - 0.2 tth, 0.04 hh (ε=7.4%), 1.3 continuum
- observed: 5 evts (2.4 σ) $\Rightarrow \sigma$ <2.2 pb @ 95% CL
- resonance search (260<mx<500 GeV)
 - signal model: spin-0 narrow resonance (Madgraph)
 - $|m_{\gamma\gamma} m_h| < 2\sigma_{m\gamma\gamma}$, $m_h = 125.5 \text{ GeV} \Rightarrow \text{single-h negligible}$
 - m_{bb} constrained to m_h (30-60% better $\sigma_{m\gamma\gamma bb}$)
 - count events in smallest window containing 95% of signal (overall signal ϵ ~3.8%-8.2%)
 - bkg from N_{data} with ≥ 2 b-jets and $|m_{\gamma\gamma} m_h| > 2\sigma_{m\gamma\gamma}$ corrected for acceptance of $m_{\gamma\gamma}$ and $m_{\gamma\gamma bb}$ cuts, determined in <2 b-jets control sample
 - max deviation from bkg $2.1\sigma \Rightarrow \sigma^*BR(hh) < 0.3-3.5 \text{ pb}$

Search for ttH, H→bb

- path towards a direct measurement of the ttH coupling
- full 8 TeV ATLAS pp dataset (20.3 fb⁻¹)
- 2 signatures exploited
 - semi-leptonic: tt→WbWb→lvjjbb: ≥6 jets (≥4b), exactly 1I, E^{miss}
 - di-leptonic: tt→WbWb→lvl'vbb: ≥4 jets (≥4b), exactly 2I (opposite sign), E^{miss}
- selection: no E_T^{miss} cut (bkg dominated by tt), allow up to 2 (b) jets missing (control regions) \Rightarrow events classified based on N_{jet} and N_b (9+6 categories)

Search for ttH, $H \rightarrow bb$

- signal extraction:
 - signal-rich regions: fit NN trained to separate ttH/tt+jets
 - inputs: object kinematics, event variables, event shape, object pairs
 - 1D distributions and correlations well modelled by MC
 - 1D distributions and correlations well modelled by MC signal-depleted regions: fit $H_T^{had} = \Sigma p_T^{jet}$ or $H_T^{lep} = \Sigma p_T^{jet, lep}$
- signal modelling: MC (Powheg+Pythia NLO)
- bkg modelling:
 - shapes from MC, main bkg (ttbar) modelling improved by applying MC/data scale factors vs p_T^t and p_T^{tt} from 7 TeV analysis
 - normalisations & fractions of tt+bb,tt+cc from signaldepleted categories or bkg-enriched bins of signalrich categories, using constraints from calculations

Search for ttH, H→bb

- results:
 - µ=1.7±1.4, consistent between 2 channels
 - 1.3_σ significance
 - µ<4.1 @95% C.L. (expected: 3.4 for SM H)
 - dominated by syst. error (Δµ=1.2), main sources:
 - tt+bb normalisation ($\Delta\mu$ ~0.6)
 - b-tag efficiency for light jets ($\Delta\mu \sim 0.4$)
 - $p_T(tt)$ reweighting ($\Delta \mu \sim 0.4$)

Couplings and production rates

- from combination of many channels ($\gamma\gamma$, ZZ^{*}, WW^{*}, bb, $\tau\tau$)
- assumptions: single particle, m_H=125.5 GeV, narrow width, SM lagrangian tensor structure (observables corrected for couplings scale factors κ_j)
- differences with respect to publication of summer 2013:
 - inclusion of fermionic channels: VH,H \rightarrow bb (partial data), H $\rightarrow \tau\tau$ (full 8 TeV data)
 - some dilepton events (including 10% of signal) removed from WW to avoid overlaps with ττ. H→WW bkg in H→ττ rescaled by H→WW signal strength
 - updated 8 TeV luminosity (-2%, uncertainty decreased from 3.6% to 2.8%)
 - more models explored
- fit to 5 observables: $m_{\gamma\gamma}$, m_{4I} , m_{bb} , $m_{T,WW}$, $BDT_{\tau\tau}$
 - signal PDF from MC, bkg PDF from MC & data control samples
- results will be soon superseded by updated ones...

Production

- overall strength:
 - good consistency between individual channels, between fermions and bosons, and with SM (7%)
- separating gg+ttH from VBF+VH:
 - good consistency w/SM (1-2σ) in each channel
- separating VBF from VH and gg+ttH:
 - $\mu_{VBF}/\mu_{ggF+ttH} = 1.4^{+0.5}-0.4^{+0.4}-0.3$
 - 4.1 σ evidence (previous: 3.3 σ), agrees with SM

ATLAS-CONF-2014-009

Total uncertainty

±1σonμ

0.5

1.5

2

1

0

σ(stat.)

o(sys inc.

σ(theory)

ATLAS Prelim.

 $\mu = 1.57^{+0.33}_{-0.28}$

 $\mu = 1.44^{+0.40}$

 $\mu = 1.00^{+0.32}_{-0.25}$

 $\mu = 1.35^{+0.2}$

 $\mu = 0.2^{+0.7}$

 $\mu = 1.4^{+0.5}$

 $\mu = 1.09^{+0.36}$

 $\mu = 1.30^{+0.18}$

-0.6

m_H = 125.5 GeV

 $H \rightarrow ZZ^* \rightarrow 4I$

Combined

 $H \rightarrow WW^* \rightarrow h v h v$

H→γγ, ZZ*, WW*

 $W,Z H \rightarrow b\overline{b}$

Combined

H→bδ, ττ

Combined

 $H \rightarrow \tau \tau$ (8 TeV data only)

 $H \rightarrow \gamma \gamma$

Couplings

- many models tested, all gives values of parameters in good agreement with SM (p-value of 10-20%)
 - separate scalings of couplings to fermions vs gauge boson
 - separate scalings of couplings to W vs Z
 - separate scalings of couplings to u-type vs d-type fermions (2HDM,...)
 - separate scalings of couplings to quarks vs leptons
 - effective gluon and photon couplings and width modified by BSM particles
 - separate scalings for couplings to W, Z, g, γ, b, t, τ, no assumption on Γ
- >5 σ (indirect) evidence of fermion couplings (ttH vertex), 3.6 σ evidence of couplings to down-type fermions and 4.0 σ evidence of couplings to leptons (H $\rightarrow \tau \tau$)

ATLAS-CONF-2014-009

- ATLAS $(\sim 0.25\%)$, good mass resolution $(\sigma_m/m \sim 1.4\%)$
- possibly enhanced by Really santicles in loops in ante top quar l→Zγ (m_=125 GeV, σ_{eM}×50) or in composite-Higgs models
- enfinante: Webougle de top signe analysis of full 7+8 TeV data • 2 same flavor, opposite-sign isolated leptons, charged fermion loops. The partial decay width can be cast into the form pT>10 GeV, mINTZ-10 GeV

160

ATLAS

Phys. Lett. B 732C (2014), pp. 8-27

- 1 isolated photon, E_T>15 GeV, $\Delta R_{\mu} > 0.3$ $G_{\mu} \alpha^2 M_H^3$
- main difference wrt previous result: event 128Ldt = 20.3 fb⁻¹, vs = 8 TeV categories (p_{Tt}, $|\Delta\eta_{Z\gamma}|$) \Rightarrow 35% higher sensitivity with the form factors for spin- $\frac{1}{2}$ and spin-1 particles
- no excess:
 - $A_{1/2}^{H}(\tau)$ µ<11 @95% CL for m_H=125.5 GeV $A_1^H(\tau)$ expected w/o (w/) SM Higgs: 9 (10)
 - $\sigma^*BR < 0.13 0.5 pb \ Che function 120 \le m \le 150 \ GeV$
- 150 same analysis w/ HL-LHC (3ab⁻¹@14 TeV): ~4σ evidence, Δµ~0.3, still m_H [GeV] statistically dominated (https://cds.cernlch/record/1 Higgs results from ATLAS

 $2[\tau +$

 $|2\tau|$

Giovanni Marchiori

ZH, H→invisible, Z→ll

- 50% more data at 8 TeV wrt previous result
- measure BR_{inv} of 125.5 GeV Higgs, or search H→invisible for m_H=110-400 GeV
 - SM ZH→llvv: negligible
 - enhanced if BSM WIMPs coupled to H
- selection (unchanged):
 - exactly 2 same-flavor opposite-sign isolated leptons, |m_{II}-m_Z|<15 GeV, Δφ_{II}<1.7
 - E_T^{miss} >90 GeV, balanced in ϕ & p_T against II
 - no jet with $p_T>25$ GeV and $|\eta|<2.5$
- main bkg (unchanged): ZZ→IIvv, WZ→IIIv.
 MC scaled to NLO xsec, checked (WZ) with 3I data. Uncertainty~10%
- signal extraction (unchanged): fit to E_T^{miss}
- no excess $\Rightarrow \sigma^* BR_{inv} < 30-400$ fb for 100 m_H=110-400 GeV and BR_{inv} <75% @ 125.5 GeV
 - previous result: BR_{inv}<65%

Conclusion

- New mass measurement fully exploiting Run1 dataset for reduction of systematic uncertainties: m_H=125.36±0.37±0.18 GeV
 - -0.15 GeV shift wrt previous result, consistent with expectations from new e/γ calibration
 - reduced tension (2 σ) between 4I and $\gamma\gamma$ channels
- Combination of latest $\gamma\gamma$, WW, ZZ, $\tau\tau$, bb results:
 - production rates and couplings consistent with SM
- Signatures for which no sensitivity yet to SM Higgs with Run1 have been investigated, no BSM excess observed
 - ttH (H \rightarrow bb): μ <4.1. Searches in $\gamma\gamma$, bb, $\tau\tau$, WW/ZZ underway
 - double-Higgs ($\rightarrow \gamma \gamma bb$) production: $\sigma < 2.2 \text{ pb} @ 95\% \text{ CL}$
 - H→Zγ: μ<11
 - H→invisible: BR_{inv}<75%

More details

ATLAS EM calorimeter

Control samples for e/γ calibration

Process	Selections	N_{events}^{data}	MC generator
$Z \rightarrow ee$	$\begin{split} E_{\rm T}^{e} &> 27 \; {\rm GeV}, \eta^{e} < 2.47 \\ 80 &< m_{ee} < 100 \; {\rm GeV} \end{split}$	5.5 M	Powheg+Pythia
$W \rightarrow e v$	$E_{\rm T}^{e} > 30 \text{ GeV}, \eta^{e} < 2.47$ $E_{\rm T}^{\rm miss} > 30 \text{ GeV}, m_{\rm T} > 60 \text{ GeV}$	34 M	Powheg+Pythia
$J/\psi \rightarrow ee$	$\begin{split} E_{\rm T}^{e} &> 5 \; {\rm GeV}, \eta^{e} < 2.47 \\ 2 &< m_{ee} < 4 \; {\rm GeV} \end{split}$	0.2 M	Pythia
$Z \rightarrow \mu \mu$	$p_{\rm T}^{\mu} > 20 \text{ GeV}, \eta^{\mu} < 2.4$ 60 < $m_{\mu\mu} < 120 \text{ GeV}$	4.3 M	Sherpa
$Z \rightarrow ll\gamma$, large-angle	$\begin{split} E_{\rm T}^{\gamma} &> 15 \; {\rm GeV}, \eta^{\gamma} < 2.37 \\ E_{\rm T}^{e} &> 15 \; {\rm GeV}, \eta^{e} < 2.47 \\ p_{\rm T}^{\mu} &> 20 \; {\rm GeV}, \eta^{\mu} < 2.4 \\ 45 &< m_{ll} < 85 \; {\rm GeV} \\ 80 &< m_{ll\gamma} < 120 \; {\rm GeV} \\ \Delta R(l,\gamma) > 0.4 \end{split}$	20k (e) 40k (μ)	Sherpa
$Z \rightarrow ll\gamma$, collinear	$E_{\rm T}^{\gamma} > 7 \text{ GeV}, \eta^{\gamma} < 2.37$ $p_{\rm T}^{\mu} > 20 \text{ GeV}, \eta^{\mu} < 2.4$ $55 < m_{ll} < 89 \text{ GeV}$ $66 < m_{ll\gamma} < 116 \text{ GeV}$ $\Delta R(\mu, \gamma) < 0.15$	120k	Sherpa
$\gamma + X$	$E_{\mathrm{T}} > 120 \; \mathrm{GeV}, \eta^{\gamma} < 2.47$	3.1 M	Рутніа

$H \rightarrow \gamma \gamma$ selection

- di-photon trigger (E_T>35,25 GeV, $|\eta|$ <2.5, loose shower-shape cuts)
- E_T/m_{γγ}>0.35, 0.25 (m_{γγ} in 105-160 GeV)
- $|\eta|$ <2.37, exclude 1.37< $|\eta|$ <1.56
- tight shower-shape cuts: ϵ ~85-95%, uncertainty<2% w/ data-driven methods
- isolation (ϵ ~95%, uncertainty<1%)
 - in calo: $E_T^{iso} < 6 \text{ GeV} (\Delta R=0.4)$
 - in tracker: p_T^{iso}<2.6 GeV (ΔR=0.2, p_T^{trk}>1 GeV, from di-photon PV)
- primary vertex: neural network using photon pointing, conversion tracks, average beamspot, Σp_T and $\Delta \phi$ between $\gamma \gamma$ and Σp_T)
 - ϵ (PV within ±15 mm in z of true vtx)~93%, negligible impact on $m_{\gamma\gamma}$
- overall $\epsilon{\sim}40\%,$ 95k events selected in 8 TeV data, $S_{\text{SM}}{\sim}400$
- inv. mass resolution=1.2-2.4 GeV, S/B=2%-25% depending on category

$H \rightarrow ZZ^* \rightarrow 4I$ selection

- single lepton or di-lepton trigger
- 2 same-flavour, opposite sign lepton pairs
- $p_T(E_T)>20-15-10-6(7)$ GeV and $|\eta|<2.7(2.47)$ for $\mu(e)$
- ΔR>0.1 (0.2) for leptons of same(different) flavour
- Iongitudinal and transverse impact parameter cuts
- tight shower-shape cuts (e), cuts on hits in various ID detectors (μ)
- track- and calorimeter- based isolation
- FSR correction
 - collinear FSR (µ only): when 66<m₁₂<89 GeV, $E_{T\gamma}$ >1.5 GeV, $\Delta R_{\mu\gamma}$ <0.15, m_{µµγ}<100 GeV [4% of events]
 - non-collinear FSR: when m_{II} <81 GeV, $E_{T\gamma}$ >10 GeV, $\Delta R_{I\gamma}$ >0.15, isolated γ , $m_{II\gamma}$ <100 GeV [1% of events]
- E, p combination (e): likelihood based on parameterisation of the cluster and track p_T/p_T^{true}
- + 50<m_{12}<106 GeV, 12<m_{34}<115 GeV, 110<m_{4I}<140 GeV
- overall $\epsilon{\sim}39\%$ (4µ), 27%(2e2µ), 20% (4e), $S_{\text{SM}}{\sim}16$ events in 8 TeV data
- Z-mass constraint (leading pair): improves σ_m by 15%

Double Higgs systematic uncertainties

- trigger: 1%
- luminosity: 2.8%
- photon ID: 2.4%
- photon isolation: 2%
- eff(b-tag): 2-3%
- JES: 5-20%
- JER: 5-10%
- diphoton mass resolution (13%): 1.6% on eff($m_{\gamma\gamma}$ cut) in resonant analysis
- diphoton mass scale (0.6 GeV): 1.7% on eff($m_{\gamma\gamma}$ cut) in resonant analysis
- acceptance of $m_{\gamma\gamma}$ cuts on continuum bkg: 11% (anti-photon ID, anti-btag, different functional forms)
- acceptance of $m_{\gamma\gamma bb}$ cuts on continuum bkg
 - statistics of the control region (<2b-tag): 3-18%
 - $m_{\gamma\gamma bb}$ shape difference signal/control: <30%
 - $m_{\gamma\gamma bb}$ fit function: 16-30%
- theory (single h bkg): 15-20%

Double Higgs: limit on resonant decays

2HDM parameters: heavy Higgs bosons degenerates in mass, xsections and BFs from arXiv:1312.5571 (Harlander et al)

Giovanni Marchiori

Higgs results from ATLAS

- single lepton trigger
- b-tagging: 70% efficiency, <1% mistag rate for light jets
- 11:
 - exactly 1 central I with p_T>25 GeV, isolated and identified
 - at least 4 jets with $p_T>25$ GeV, $|\eta|<2.5$, at least 2 b-tag
 - dilepton veto
- 21:
 - exactly 2 central I of opposite charge with pT1>25 GeV and pT2>15 GeV, isolated and identified
 - at least 4 jets with $p_T>25$ GeV, $|\eta|<2.5$, at least 2 b-tag
 - emu channel: H_T>130 GeV
 - ee, mumu: m_{II}>60 GeV in 2 b-tags, |m_{II}-m_Z|>8 GeV
- overlaps: dR(lepton-jet)>0.4 (for electrons, first remove jet closest to e)

ttH: background and signal

- W/Z+jets: normalised to NNLO, p_T(V) reweighting, HF fraction (cc+bb) adjusted to reproduce rate of Z events with 0 and 1 b-tag in data
- WW/WZ/ZZ+jets, ttV: normalised to NLO
- tt+jets: normalised to NNLO, p_T(t) and p_T(tt)
- single-top: normalised to approximate NNLO
- ttH signal: Powheg HELAC-Oneloop + Pythia8, scales=(2mT+mH)/2, NLO xs
 - Signal-depleted regions: use $H_T^{had} = \sum p_T^{jets}$ for ℓ +jets and $H_T = \sum p_T^{jets} + \sum p_T^{\ell}$ for dilepton

 - Signal-rich regions: use NN trained to separate tt
 t H from tt
 t+jets in each of the region
- tt normalisation: (4j, 2b) [1l] and (2j, 2b) [2l]
- tt+light, tt modelling: 2b-tag regions
- charm tagging: (4j, 3b) [1l] region (large contribution from tt+light, W->cs

Higgs results from ATLAS

tt+bb, tt+cc normalisations: 3, >=4 b-jets (bkg-enriched bins)

Giovanni Marchiori

Background samples used:

- tt+jets: Powheg+Pythia
- ttZ, ttW: Madgraph+Pythia
- W+jets: Alpgen+Pythia
- Z+jets: Alpgen+Herwig
- Dibosons: Alpgen+Herwig
- Single top: Powheg/AcerMC + Pythia
- Multijet: data driven

	2 <i>b</i> -tags	3 <i>b</i> -tags	\geq 4 <i>b</i> -tags
4 jets	H_T^{had}	H_T^{had}	H_T^{had}
5 jets	H_T^{had}	NN	NN
\geq 6 jets	H_T^{had}	NN	NN

	2 <i>b</i> -tags	3 <i>b</i> -tags	\geq 4 <i>b</i> -tags
2 jets	Η _T		
3 jets	H_T	NN	
\geq 4 jets	Η _T	NN	NN

ttH: systematic uncertainties

\geq 6 jets, \geq 4 <i>b</i> tags (pre-fit)				
	tīH (125)	$t\overline{t} + light$	$t\overline{t} + c\overline{c}$	$t\overline{t} + b\overline{b}$
Luminosity	±2.8	±2.8	±2.8	±2.8
Lepton efficiencies	± 1.4	± 1.4	± 1.4	± 1.5
Jet energy scale	± 6.5	± 14	± 10	±8.2
Jet efficiencies	± 1.6	± 5.4	± 2.5	± 2.4
Jet energy resolution	± 0.1	± 8.5	± 4.1	± 4.3
b-tagging efficiency	± 9.0	± 5.8	± 5.1	±9.2
c-tagging efficiency	± 1.9	± 7.3	± 14	± 2.8
Light jet-tagging efficiency	± 1.0	± 17	± 4.4	± 1.5
tt modelling: reweighting	-	± 11	± 13	± 13
tt modelling: parton shower	-	±7.5	± 1.8	± 10
tt heavy-flavour: normalisation	-	-	±50	±50
tt heavy-flavour: reweighting	-	-	± 11	±12
tt heavy-flavour: generator	-	-	±2.2	±2.9
Theoretical cross sections	-	± 6.2	± 6.3	± 6.3
tTH modelling	± 1.9	-	-	-
Total	±12	±30	±57	± 56

Other results:

CMS @ 8 TeV combination of I+jets, dilepton and tautau:
 obs (exp) = 5.2 (4.1) @ mH = 125 GeV

ATLAS γγ: obs (exp) = 4.7 (5.4) @ mH = 126.8 GeV

Couplings

- fermions (κ_F) vs vector bosons (κ_V), no extra Higgs decays:
 - κ_F=0.99^{+0.17}-0.15, κ_V=1.15±0.08, 10% consistency w/ SM
 - indirect evidence of fermion couplings $>5\sigma$
- W (κ_W) vs Z (κ_Z) (custodial symmetry), no extra Higgs decays (extra param: κ_F)
 - $\lambda_{WZ} = \kappa_W / \kappa_Z = 0.94^{+0.14} 0.29$, 19% consistency w/ SM
- u-type (κ_u) vs d-type (κ_d) fermions (2HDM,...), no extra Higgs decays (extra param: κ_V)
 - λ_{du}=±[0.95^{+0.20}-0.18], 20% consistency w/ SM
 - 3.6 σ evidence of couplings to down-type fermions (H $\rightarrow \tau\tau$..)

Couplings (II)

- quarks (κ_q) vs leptons (κ_l), no extra Higgs decays (extra param: κ_V):
 - $\lambda_{lq}=\pm[1.22^{+0.28}_{-0.24}], 15\%$ consistency w/ SM
 - 4.0 σ evidence of couplings to leptons (H $\rightarrow \tau\tau$..)
- BSM particles affecting loops (κ_g, κ_γ) and total width (BR_{inv})
 - $\kappa_g = 1.00^{+0.23}$ -0.16 $\kappa_{\gamma} = 1.17^{+0.16}$ -0.13 BRinv=-0.16^{+0.29}-0.30
 - 18% consistency w/ SM
- generic model with separate couplings for W, Z, g, γ , b, t, τ and no assumption on width
 - 21% consistency w/ SM
 - top coupling unconstrained (degenerate with effective g coupling, would need tty observation)

Higgs results from ATLAS

Higgs results from AI LAS

$H \rightarrow Z\gamma$ systematic uncertainties

- luminosity: 2.8%
- photon ID: 2.6-3.1%
- electron trigger/rec/ID: 2.5-3%
- p_T^t migration (HRes2): 1.8-3.6%
- m_{IIγ}:
 - position: 0.2 GeV, from photon energy scale
 - resolution: 3% ($\mu\mu\gamma$), 10% (ee γ) from e/ γ resolution

H→invisible: backgrounds, systematic errors

- data-driven bkg estimation
 - true dileptons not from Z: from emu events
 - true dileptons from Z: invert phi/pT balance cuts
 - fake leptons: anti-iso/identified laptons
- signal systematic uncertainties:
 - luminosity: 2.8%
 - lepton trigger/rec/ID: 1-1.5%
 - JES, JER: 3-6%
 - ETmiss: uncertainties on objects used to build it (see above) + pile-up dependence: 1-2%
 - theory: scale+PDF: 3.6-5.7%
- bkg xsection uncertainties:
 - ZZ: 5% (scale+PDF), 5.5% (jet veto)

t→qH (q=c,u)

- <u>CERN-PH-EP-2014-036</u>, accepted by JHEP
- previous result: 0.83% (0.53%)
- differences wrt preliminary result:
 - updated σ_{tt} and signal efficiency
 - BR<0.79% (0.51%) observed (expected) @ 95% ___
- signature tt \rightarrow WbqH, H $\rightarrow\gamma\gamma$, W \rightarrow jj or W \rightarrow Iv
 - hadronic: \geq 4 jets (\geq 1b), m₁ = m_{yyj}, m₂=m_{bjj}
 - leptonic: ≥2 jets (≥1b), 1l, E_T^{miss}, m₁=m_{γγj}, m₂=m_{Ivb} (using W mass constraint)
 - |m₁-m_t|<17 GeV, |m₂-m_t|<40(h),35(l) GeV
- signal extraction: $m\gamma\gamma$ fit (hadronic) or counting in $m\gamma\gamma$ signal and sideband
- SM Higgs bkg = 0.24±0.05 (had), 0.05±0.01 (lep), mostly from ttH¹²⁰
- other bkgs: γγ+jets (dominant), tt, Wγ
- experimental systematic errors: signal/SM bkg ~10%; continuum bkg: data driven for had channel (+small sp. signal), 30% uncertainty on extrapolation for lep channel

High-luminosity prospects

