

Constraints on New Phenomena via Higgs Coupling Measurements with the ATLAS Detector

David Delgove

June 2, 2014

Introduction

- The Higgs boson, the last missing piece of Standard Model, has been discovered at a mass around 125.5 GeV and is compatible with 0⁺⁺
- Nevertheless, questions remains : Hierarchy problem, dark matter, new interactions or particles → Imply deviations with respect to Standard Model
- In the Higgs couplings combination :

 \rightarrow Measure deviation of the number of signal events with respect to the expected one :

 $n = s + b = \mu \sigma_{SM} B R_{SM} \mathcal{LA} \epsilon + b$

→ Assume perfect understanding of experimental conditions and analysis (Luminosity, efficiency background...)

 \rightarrow Interpret results as a **deviation with respect to Standard Model** (cross section, branching ratio, couplings ...)

- \rightarrow No informations on the origins of the deviations
- In ATLAS-CONF-2014-010, deviations are used to constrain BSM theories, results are not final and will be updated
- Results use the $h \rightarrow 4I$, $h \rightarrow 2I2v$, $h \rightarrow bb$, $h \rightarrow \gamma\gamma$, $h \rightarrow \tau\tau$ analysis at 7 TeV with up to 4.6-4.8 fb⁻¹ and 8 TeV with 20.3 fb⁻¹

Deviation coupling modifiers

• Define the deviation coupling modifiers $\boldsymbol{\kappa}$:

 \rightarrow ratio of the Higgs boson coupling over the Standard Model coupling \rightarrow κ = 1 corresponds to Standard Model

- Determination is based on the maximization of an unbinned likelihood function
- Use Narrow width approximation :
 - \rightarrow Decouple production and decay
 - \rightarrow Example for qq \rightarrow Zh \rightarrow bb :

$$s \propto \kappa_Z^2 \frac{\kappa_b^2}{\kappa_h^2}$$

 \Rightarrow With : $\kappa_h^2 = \frac{\Gamma_h}{\Gamma_{h,SM}}$

• If assume Standard Model decays only :

$$\kappa_h^2 = \sum_i \kappa_i^2 B R_{i,SM}$$

Additionnal comments

- Photons and gluons are not massive but interact with the Higgs boson via a loop
- Two treatments are possible :

 \rightarrow Keep the modifiers and consider an effective coupling : sensitive to new particles in the loops (charged for the photons, colored for the gluons)

 \rightarrow Resolved couplings : Express as a function of the modifiers of the massive particle, assume standard model content in the loop

• Determination of the confidence interval uses the profiled likelihood ratio :

$$\Lambda(\alpha) = \frac{\mathcal{L}(\alpha, \hat{\hat{\theta}}(\alpha))}{\mathcal{L}(\hat{\alpha}, \hat{\theta})}$$

- $\boldsymbol{\alpha}$: parameters of interest
- θ : nuisance parameters
- If the studied parameter has a physical boundary (for instance BR_{inv}>0), an alternative test statistic is defined (similar to the Feldmans and Cousins procedure)
- Assume asymptotic distributions for the two tests

Probing the mass dependence (1/2)

- Check the mass dependence of the Higgs boson couplings with respect to the Standard Model (linear for the fermions, quadratic for the W, Z bosons)
- Introduce a **phenomenological parametrization** of couplings, or equivalently, of the coupling constant modifiers (arXiv:1303.3879) :

→ For the couplings :
$$g_f = \sqrt{2} \frac{m_f^{1+\epsilon}}{M^{1+\epsilon}}$$
 and $g_V = 2 \frac{m_V^{2(1+\epsilon)}}{M^{1+2\epsilon}}$
→ For the modifiers : $\kappa_f = v \frac{m_f^{\epsilon}}{M^{1+\epsilon}}$ and $\kappa_V = v \frac{m_V^{2\epsilon}}{M^{1+2\epsilon}}$

- Mass scaling : ϵ and "vacuum expectation value" : M
- Standard Model is found for ($\epsilon \rightarrow 0$, M $\rightarrow \nu \approx 246$ GeV)
- Consider only Standard Model particles
- Except $\varepsilon = 0$ (Standard Model), others values have no interpretation

Probing the mass dependence (2/2)

- Plot the 2D contours in the plan (ϵ , M) which correspond to : $\rightarrow -2ln(\Lambda(\epsilon, M)) = 2.3$ corresponds to 68 % confidence level $\rightarrow -2ln(\Lambda(\epsilon, M)) = 6$ corresponds to 95 % confidence level
- Standard Model is compatible with data within 1.5 σ

Higgs Compositeness (1/2)

- Possible solution of the hierarchy problem : Higgs boson is a composite particle
- Introduce a **compositeness scale f** : $f \rightarrow \infty$ corresponds to Standard Model
- The Higgs coupling are modified, two models have been tested :

$$\rightarrow \text{ MCHM 4}: \kappa = \kappa_V = \kappa_F = \sqrt{1 - \xi} \quad \text{(1)}$$

$$\rightarrow \text{ MCHM 5}: \kappa_V = \sqrt{1 - \xi} \text{ and } \kappa_F = \frac{1 - 2\xi}{\sqrt{1 - \xi}} \quad \text{(2)}$$

where $\xi = v^2/f^2$ and $\xi \rightarrow 0$ is the Standard Model case

- · Assume decays and particle content for the loops of standard model
- Limits on ξ can be deduced and convert into a limit on f \rightarrow **Physical boundary at** $\xi = 0$

Higgs Compositeness : Results (2/3)

• (1) and (2) define a parametric equation in the plan (κ_v , κ_E)

- Easy visualization of the probed region in the plan (κ_v , κ_E)
 - \rightarrow Composite models are disfavoured

Higgs Compositeness : Results (3/3)

• Profiled likelihood for the two models :

- Current Limits at 95 % CL (Alternative procedure) :
 - → MCHM 4 : f > 710 GeV (exp. : f > 460 GeV)
 - → MCHM 5 : f > 640 GeV (exp. : f > 550 GeV)

Additional Electroweak singlet (1/3)

- Simplest extension of the Standard Model Higgs Sector :
 - → Additional Electroweak Singlet
 - \rightarrow Possible solution to dark matter problem
 - → Two Higgs Boson h (Standard Model) and H
- Coupling of h/H are the standard model prediction for the mass of the considered Higgs Boson decreased by a factor κ/κ' such that :

 $\kappa^2 + \kappa'^2 = 1$ (unitarity constraint)

• For the lightest Higgs boson, consider only Standard Model particles :

$$\sigma_h = \kappa^2 \sigma_{h,SM}, \Gamma_h = \kappa^2 \Gamma_{h,SM}, BR_{h,i} = BR_{h,SM,i}$$

- Consider the possibility for the heaviest Higgs boson to decay into new particles with no charge and no color (resolved couplings for photons and gluons) :
 - \rightarrow For instance, if allowed, H \rightarrow hh
 - \rightarrow Introduce a branching ratio : BR_{H new}

Additionnal Electroweak singlet (2/3)

• For the heaviest Higgs boson :

$$\sigma_H = \kappa'^2 \sigma_{H,SM}, \ \Gamma_H = \frac{\kappa'^2}{1 - BR_{H,new}} \Gamma_{H,SM}, \ BR_{H,i} = \frac{\kappa'^2}{1 - BR_{H,new}} BR_{H,i,SM}$$

• Using the unitarity constraint, the likelihood (initially a function of κ) can be expressed as a function of κ' :

 \rightarrow Possible to deduce a limit on κ'

→ Observed :
$$\kappa'^2 = -0.30^{+0.17}_{-0.18}$$

→ Expected :
$$\kappa'^2 = -0.00^{+0.15}_{-0.17}$$

- Applying alternative Procedure at 95 % CL :
 - → the limit is $\kappa'^2 < 0.12$ (0.29 for exp.)

Additionnal Electroweak singlet (3/3)

• Define the signal strength factor :

$$\mu_H = \frac{\sigma_H B R_H}{(\sigma_H B R_H)_{SM}} = \kappa'^2 (1 - B R_{H,new})$$

- From the limit on κ' : deduce excluded region in the plan ($\mu_{_{\rm H}}\,, {\rm BR}_{_{\rm H.new}}\,)$

Two Higgs doublet models (1/3)

- Other extension of the Standard Model Higgs Sector :
 - \rightarrow Additional Higgs doublet such as MSSM (5 Higgs Bosons)
 - → Motivated by hierarchy problem and dark matter
- Couplings described by two parameters :
 - \rightarrow tan β : the ratio of the vev's of the two Higgs doublets
 - $\rightarrow \alpha$: the mixing angle between the two CP-even Higgs states
- Assume the discovered Higgs boson is the lightest CP-even states
 - \rightarrow Standard model particles content for the loops and decays
- In the models, b-quark coupling to the light Higgs boson can become important :
 - → Need to take in account the bbH production mode
 - \rightarrow Done for all the two Higgs doublet models
 - \rightarrow Rescale the fusion gluon cross section with the prediction of SUSHI and 2HDMC

 \rightarrow Corrections below 10 % for the region compatible at 95 % confidence level

Two Higgs doublet models : Type I and II (2/3)

Two Higgs doublet models Type III and IV (3/3)

	K _V	K _u	K _d	K
Туре 3	sin(β-α)	$\cos \alpha / \sin \beta$	$\cos \alpha$ / $\sin \beta$	- sin α / cos β
Type 4	sin(β-α)	$\cos \alpha / \sin \beta$	- sin α / cos β	$\cos \alpha / \sin \beta$

ATLAS-CONF-2014-010

ATLAS Preliminary

√s = 8 TeV: ∫Ldt = 20.3 fb⁻¹

Combined h $\rightarrow \gamma\gamma$,ZZ*,WW*

 $h \to \tau \tau, b \overline{b}$

 $\cos(\beta - \alpha)$

ATLAS-CONF-2014-010

tan β

Simplified MSSM (1/2)

- MSSM provides a possible solution to the hierarchy problem and dark matter
- Simplification of MSSM (arxiv:1307.5205) :
 - \rightarrow Radiative corrections involving top quark and stops are fixed by the mass of the standard model Higgs boson
 - → Loops corrections from stops in ggF and diphoton decays are neglected (expected less than 5%)
 - → Corrections which break universality of down type fermions $(\kappa_{h} \neq \kappa_{r})$ are negleted
 - \rightarrow Deviation coupling modifiers for boson (κ_v), up type-fermion

(κ_u), down type-fermion (κ_d) depend only on tan β and m_A the mass of the pseudo scalar Higgs boson

• Take in account the bbh production mode by modifying the deviation coupling modifier of gluons only in the case of gluons fusion production :

$$1.06\kappa_t^2 - 0.07\kappa_b\kappa_t + 0.01\kappa_b^2 + 0.011\kappa_b^2$$

16

Contribution of bbh

- Standard Model corresponds to $m_{_{\!\!\!A}}\,\rightarrow\,\infty$

Simplified MSSM (2/2)

• 2D contours in the plan (m_{A} , tan β) :

- For tan $\beta > 2$:
 - → mA > 400 GeV @ 95% CL (obs.)
 - → mA > 290 GeV @ 95% CL (exp.)

Higgs invisible branching ratio (1/2)

- Models introduce weakly interacting particles (Wimps) to solve the dark matter problem
- Interact weakly with all the standard model particles except the Higgs Boson, if the mass of the particle is lower than m_{h} /2 :

 \rightarrow Higgs Boson could decay in these particles (BR_{inv})

- Possibility to probe this model with the visible searches using the following model (κ_{qluon} , κ_{v} , BR_{inv}):
 - \rightarrow Sensitive to new particles in loops and decays

→ Formula of
$$\kappa_{h}$$
 is modified :

$$\kappa_{H}^{2} = \frac{0.085\kappa_{gluon}^{2} + 0.0023\kappa_{\gamma}^{2} + 0.9}{1 - BR_{inv}}$$
→ Others : κ_{h} , κ_{t} , κ_{w} , κ_{z} , κ_{τ} are fixed to 1
→ Assume BR_{und} = 0

 For this model only : Combine the Zh → II + Etmiss (arxiv :1402.3244) with the 5 visible searches (referred as 6 channels)

Higgs invisible branching ratio (2/2)

- 6-channels : Ignoring physical boundary \rightarrow alternative procedure : \rightarrow Obs. : BR_{inv} = $-0.02 \pm 0.20 \rightarrow$ BR_{inv} < 0.37 @ 95 % CL \rightarrow Exp. : BR_{inv} = $0.00 \pm 0.21 \rightarrow$ BR_{inv} < 0.39 @ 95 % CL
- 5-channels results : Ignoring physical boundary \rightarrow alternative procedure : \rightarrow Obs. : BR_{inv} = $-0.16^{+0.28}_{-0.30} \rightarrow BR_{inv} < 0.41 @ 95 \% CL$ \rightarrow Exp. : BR_{inv} = $0.00^{+0.29}_{-0.32} \rightarrow BR_{inv} < 0.55 @ 95 \% CL$

 Continuous curves stop at -0.3 due to negative pdfs

Higgs portal to Dark matter

- Possible to convert the invisible branching ratio into scattering cross section of dark matter on a nuclei
- Depends on the nature (scalar, fermionic, vector) of dark matter
- Allow comparison with direct searches (e.g XENON)
- Assume the invisible branching ratio of the Higgs boson only comes from the wimps
- Assume VH production rate of Standard Model
- Limits from ATLAS in Higgs Portal model at low mass significantly better than those from direct detection limits

Conclusion

- All results compatible with Standard Model
- Higgs Imposter : consistent with mass scaling and vev within 1.5 σ
- Higgs compositeness :
 - → MCHM 4 : f > 710 GeV (exp. : f > 460 GeV)
 - → MCHM 5 : f > 640 GeV (exp. : f > 550 GeV)
- Electroweak Singlet : $\kappa'^2 < 0.12$ (0.29) observed (expected)
- 2HDM : consistent with SM alignment limit within 1-2 σ
- Simplified MSSM model :

→ for tan β > 2, m_{Δ} > 400 (290) Gev obs. (exp.) @ 95% CL

• Higgs Portal to dark matter :

 \rightarrow BR_{inv} < 0.37 (0.39) observed (expected) @ 95 % CL

Thanks

Questions ?

BACKUP

Input Channels : 7 TeV

Higgs Boson	Subsequent	Cub Channela	∫ L dt
Decay	Decay	Sub-Channels	fb ⁻¹]
		2011 $\sqrt{s}=$ 7 TeV	
$H ightarrow \gamma \gamma$	_	10 categories { $p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}$ } \oplus {2-jet VBF}	4.8
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2-jet VBF, \ell-tag\}$	4.6
$H \rightarrow WW^{(*)}$	lνlν	$\{\textit{ee},\textit{e}\mu,\mu\textit{e},\mu\mu\}\otimes$ {0-jet, 1-jet, 2-jet VBF}	4.6
VH ightarrow Vbb	$Z \rightarrow \nu \nu E$	$\Xi_{ m T}^{ m miss} \in \{ 120 - 160, 160 - 200, \geq 200 m SeV \} \otimes \{ 2 ext{-jet}, 3 ext{-jet} \}$	4.6
	$W \rightarrow \ell \nu p$	$_{\rm T}^{W} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7
	$Z \rightarrow \ell \ell p$	$D_T^Z \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7

• For the invisible Higgs combination (and Higgs portal to dark matter), use also the Zh \rightarrow II + E^{miss}_t:

→ arxiv:1402.3244

Input Channels : 8 TeV

Higgs Boson	Subsequent	Sub Channols	∫ <i>L</i> d <i>t</i>	
Decay	Decay	Sub-Chaimeis	[fb ⁻¹]	
		2012 $\sqrt{s}=$ 8 TeV		
$H o \gamma \gamma$	_	14 categories: { $p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}$ } \oplus	20.3	
		{loose, tight 2-jet VBF} \oplus { ℓ -tag, E_{T}^{mss} -tag, 2-jet VH}		
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2 ext{-jet VBF}, \ell ext{-tag}\}$	20.3	
$H \rightarrow WW^{(*)}$	$\ell \nu \ell \nu$	$\{m{ee},m{e\mu},\mum{e},\mu\mu\}\otimes$ {0-jet, 1-jet, 2-jet VBF}	20.3	
VH ightarrow Vbb	$Z \to \nu \nu$	$\textit{E}_{\mathrm{T}}^{\mathrm{miss}} \in \{ 120 - 160, 160 - 200, \geq 200 \mathrm{GeV} \} \otimes \{ ext{2-jet}, ext{3-jet} \}$	20.3	
	$W ightarrow \ell u$ p	$P_T^{W} \in \{<\!90, 90\text{-}120, 120\text{-}160, 160\text{-}200, \geq \!200 \mathrm{GeV}\} \otimes \{2\text{-}jet, 3\text{-}jet\}$	20.3	
	$Z ightarrow \ell \ell$ μ	$D_{\mathrm{T}}^Z \in \{<\!90,90\text{-}120,120\text{-}160,160\text{-}200,\geq \!200 \; \mathrm{GeV}\} \otimes \{2\text{-}\mathrm{jet},3\text{-}\mathrm{jet}\}$	20.3	
	$ au_{ m lep} au_{ m lep}$	$\{ee, e\mu, \mu\mu\} \otimes \{ ext{boosted}, 2 ext{-jet VBF}\}$	20.3	
H ightarrow au au	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{ ext{boosted}, 2 ext{-jet VBF}\}$	20.3	
	$ au_{ m had} au_{ m had}$	{boosted, 2-jet VBF}	20.3	

- For the invisible Higgs combination (and Higgs portal to dark matter), use also the Zh \rightarrow II + E^{miss}_t:
 - → arxiv:1402.3244

Alternative procedure : Test Statistic

• Determination of the confidence interval uses the profiled likelihood ratio :

$$\Lambda(\alpha) = \frac{\mathcal{L}(\alpha, \hat{\theta}(\alpha))}{\mathcal{L}(\hat{\alpha}, \hat{\theta})}$$

 $\boldsymbol{\alpha}$: parameters of interest

- θ : nuisance parameters
- If the studied parameter has a physical boundary (for instance BR_{inv}>0), an alternative test statistic is defined (similar to the Feldmans and Cousins procedure)
- Alternative test statistic for a boundary at zero:

$$\tilde{t_{\mu}} = \begin{cases} \frac{\mathcal{L}(\alpha, \hat{\hat{\theta}}(\alpha))}{\mathcal{L}(0, \hat{\hat{\theta}}(0))} & \hat{\mu} < 0\\ \frac{\mathcal{L}(\alpha, \hat{\hat{\theta}}(\alpha))}{\mathcal{L}(\hat{\alpha}, \hat{\theta})} & \hat{\mu} > 0 \end{cases}$$

Higgs Compositeness : Results

- Best fit values and errors (Ignoring physical boundary $\xi > 0$) :
 - → MCHM 4 : $\xi = -0.30^{+0.17}_{-0.18}$ (obs.) and $\xi = 0.00^{+0.15}_{-0.17}$ (exp.)
 - → MCHM 5 : $\xi = -0.08^{+0.11}_{-0.16}$ (obs.) and $\xi = 0.00^{+0.11}_{-0.13}$ (exp.)

Simplified MSSM : Mass Matrix

• Mass matrix given by :

$$\mathbf{M}_{S}^{2} = \begin{pmatrix} m_{Z}^{2} \cos^{2}\beta + m_{A}^{2} \sin^{2}\beta & -(m_{Z}^{2} + m_{A}^{2})\cos\beta\sin\beta \\ -(m_{Z}^{2} + m_{A}^{2})\cos\beta\sin\beta & m_{Z}^{2}\sin^{2}\beta + m_{A}^{2}\cos^{2}\beta \end{pmatrix} + \begin{pmatrix} \Delta M_{11}^{2} \ \Delta M_{12}^{2} \\ \Delta M_{12}^{2} \ \Delta M_{22}^{2} \end{pmatrix}$$

• It is possible to show that :

$$\Delta M_{22}^2 = \frac{\delta}{\sin^2\beta} >> \Delta M_{11}^2, \Delta M_{12}^2$$

- And finally : $M_h^2 = M_Z^2 cos^2(2\beta) + \delta$
- The expressions of deviation coupling modifiers are :

$$\kappa_{down} = \frac{\sqrt{1 + \tan^2\beta}}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}} \kappa_{up} = \frac{\frac{\sqrt{1 + \tan^2\beta}}{\tan\beta} \frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta}}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}} \kappa_V = \frac{\frac{1}{\sqrt{1 + \tan^2\beta}} \frac{1}{\sqrt{1 + \tan^2\beta}} \frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta}}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}} \chi_V = \frac{\frac{1}{\sqrt{1 + \tan^2\beta}} \frac{1}{\sqrt{1 + \tan^2\beta}} \frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta}}}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta}{-(M_Z^2 + M_A^2)\cos\beta\sin\beta})^2}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta)^2}}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta)^2}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta)^2}}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta)^2}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta)^2}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta)^2}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta)^2}}} \chi_V = \frac{1}{\sqrt{1 + (\frac{m_h^2 - M_Z^2 \cos^2\beta - M_A^2 \sin^2\beta)^2}}} \chi_V =$$

Interpretation in Higgs Portal to DM

