LFV Higgs decays in the inverse seesaw arXiv:1405.4300

in collaboration with E. Arganda, M.J. Herrero and X. Marcano

Instituto de Física Teórica, Universidad Autónoma de Madrid/CSIC, Spain

GDR Terascale@Palaiseau École Polytechnique, June 4th, 2014

・ロット (雪) (日) (日)

Neutrino oscillations

•
$$P_{\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}} \neq 0$$
 only if $\Delta m_{kj}^2 = m_k^2 - m_j^2$ and $U_{\nu} \neq \mathbb{1}$

- Best fit (nu-fit.org) solar $\begin{array}{l} \text{solar} \\ \text{atmospheric} \\ \text{reactor} \end{array}$ $\begin{array}{l} \theta_{12} \simeq 34^{\circ} \\ \theta_{23} \simeq 42^{\circ} \\ \theta_{13} \simeq 8.8^{\circ} \end{array}$ $\begin{array}{l} \Delta m_{12}^2 \simeq 7.5 \times 10^{-5} \text{eV}^2 \\ |\Delta m_{23}^2| \simeq 2.4 \times 10^{-3} \text{eV}^2 \end{array}$
- Different mixing pattern, ν lightness $\stackrel{?}{\leftarrow}$ Majorana nature
- SM: no *ν* mass term, lepton flavour is conserved ⇒ need new Physics
 - Radiative models
 - Extra dimensions
 - R-parity violation in supersymmetry
 - Seesaw mechanism \rightarrow BAU through leptogenesis ?
- Neutrino oscillations = Neutral lepton flavour violation Why not charged lepton flavour violation (cLFV) ?

・ ロ ト ・ 雪 ト ・ 目 ト ・

Motivation	Inverse seesaw	LFV Higgs decays in the ISS	Degenerate heavy N	Hierarchical heavy N
cLFV				

- In the Standard Model: cLFV from higher order processes
 ⇒ negligible
- If cLFV observed:
 - Clear evidence of physics at a higher scale
 - Probe the origin of lepton mixing
 - Probe the origin of New Physics
- Complementary to other New Physics searches
 - High energy: LHC
 - High intensity:
 - B factories: Rare decays, etc
 - Neutrino dedicated experiments: U_{PMNS} non-unitarity...
 - Other low energy experiments: $(g 2)_{\mu}$, EDM, LUV...

Motivation	Inverse seesaw	LFV Higgs decays in the ISS	Degenerate heavy N	Hierarchical heavy N
cLFV				

- Radiative decays, e.g. ${\rm Br}(\mu
 ightarrow e \gamma) < 5.7 imes 10^{-13} \, {\rm [MEG, 2013]}$
- 3-body lepton decays, e.g. $\tau \rightarrow 3\mu < 2.1 \times 10^{-8}$ [Belle, 2010]
- Neutrinoless muon conversion, e.g. μ^- , Au $\rightarrow e^-$, Au $< 7 \times 10^{-13}$ [SINDRUM II, 2006]
- Meson decays, e.g. $B^0_d \rightarrow e\mu < 2.8 \times 10^{-9}$ [LHCb, 2013]
- Z decays, e.g. $Z^0 \rightarrow e\mu < 1.7 \times 10^{-6}$ [OPAL, 1995]

Higgs boson discovery

- Discovery of a Higgs boson at LHC in 2012, with properties compatible with the SM Higgs [ATLAS, 2012; CMS, 2012]
- Evidence for $H \to \tau^+ \tau^-$ (CMS: 3.2 σ , ATLAS: 4.1 σ) Active searches of $H \to \mu^- \mu^+$ and $H \to e^+ e^-$
- Timely to consider LFV Higgs decays, e.g. $H \rightarrow \bar{\tau}\mu$
- LHC sensitivity to $Br(H \rightarrow \bar{\tau}\mu)$: 4.5 × 10⁻³ with 20fb⁻¹ [Davidson and Verdier, 2012] 8.6 × 10⁻³ with 20fb⁻¹ [Bressler et al., 2014]

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

The inverse seesaw mechanism

• Inverse seesaw \Rightarrow Consider fermionic gauge singlets ν_{Ri} (L = +1) and X_i (L = -1) [Mohapatra and Valle, 1986]

$$\mathcal{L}_{inverse} = -Y_{\nu}^{ij}\overline{L_{i}}\tilde{H}\nu_{Rj} - M_{R}^{ij}\overline{\nu_{Ri}^{C}}X_{j} - \frac{1}{2}\mu_{X}^{ij}\overline{X_{i}^{C}}X_{j} + \text{h.c.}$$

with
$$m_D = Y_{\nu} v, M^{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M_R \\ 0 & M_R^T & \mu_X \end{pmatrix}$$

 $egin{aligned} m_
u &pprox & rac{m_D^2 \mu_X}{m_D^2 + M_R^2} \ m_{N_1,N_2} &pprox & \mp \sqrt{m_D^2 + M_R^2} + rac{M_R^2 \mu_X}{2(m_D^2 + M_R^2)} \end{aligned}$

2 scales: μ_X and M_R

Effective approach to seesaw mechanisms

- Seesaw mechanism: New fields with a mass M_R > EW scale and Majorana mass terms
 ⇒ Generate m_ν in a renormalizable theory and at tree-level
- Notice that lepton number conservation is accidental in the SM
- Unique dimension 5 operator for all seesaw mechanisms
 → Violates lepton number L ⇒ Majorana neutrinos

$$\delta \mathcal{L}^{d=5} = \frac{1}{2} c_{ij} \frac{(H \cdot L_i)^{\dagger} (H \cdot L_j)}{\Lambda} + \text{h.c.}$$

- To distinguish the several seesaw mechanisms, either
 - Directly produce the heavy states (LHC, ILC)
 - Look for dimension ≥ 6 operators effects → cLFV, precision test measurements, etc

э

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

Inverse seesaw experimental tests

• Inverse seesaw: $Y_{\nu} \sim \mathcal{O}(1)$ and $M_R \sim 1 \text{ TeV}$ \Rightarrow testable at the LHC and low energy experiments

LHC/ILC signatures

- single lepton + dijet + missing energy [Das and Okada, 2012]
- di-lepton + missing p_T [Bhupal Dev et al., 2012, Bandyopadhyay et al., 2013]
- tri-lepton + missing E_T [Das and Okada, 2012, Mondal et al., 2012]
- invisible Higgs decays [Banerjee et al., 2013]
- Low energy:
 - deviations from lepton universality [Abada, Teixeira, Vicente and CW, 2014]
 - charged lepton flavour violation [Bernabéu et al., 1987, Deppisch et al., 2006]
 - neutrinoless double beta decay

[Awasthi et al., 2013, Abada and Lucente, 2014]

Diagrams

In the Feynman-'t Hooft gauge, same

as [Arganda et al., 2005]:

(2)

(6)

(10)

(5)

(4)

(7)

(9)

(8)

• Formulas adapted from [Arganda et al., 2005]

- Diagrams 1, 8, 10 \rightarrow dominate at large M_R
- Enhancement from: - $\mathcal{O}(1) Y_{\nu}$ couplings -TeV scale n_i

 Neutrino data → Use of a modified Casas-Ibarra parametrization [Casas and Ibarra, 2001]

 $vY_{\nu}^{T} = V^{\dagger} \operatorname{diag}(\sqrt{M_{1}}, \sqrt{M_{2}}, \sqrt{M_{3}}) R \operatorname{diag}(\sqrt{m_{1}}, \sqrt{m_{2}}, \sqrt{m_{3}}) U_{PMNS}^{\dagger}$ $M = M_{R} \mu_{X}^{-1} M_{R}^{T}$

- Charged lepton flavour violation \rightarrow Most constraining: Br($\mu \rightarrow e\gamma$) < 5.7 × 10⁻¹³ [MEG, 2013]
- Lepton universality violation: less contraining than $\mu \rightarrow e\gamma$
- Electric dipole moment: 0 with real PMNS and mass matrices
- Invisible Higgs decays: $M_R > m_H$, does not apply

(日)

Constraints: focus on $\mu \rightarrow e\gamma$

•
$$\frac{v^2 (Y_{\nu} Y_{\nu}^{\dagger})_{km}}{M_R^2} \approx \frac{1}{\mu_X} \frac{(U_{\text{PMNS}} \Delta m^2 U_{\text{PMNS}}^T)_{km}}{2m_{\nu_1}}$$

Degenerate heavy N

Hierarchical heavy N

Dependence on ISS parameters

Degenerate heavy N

Dependence on ISS parameters

Dependence on ISS parameters

• M_R and μ_X degenerate and real

- Independent of *R* for real mixing angles
- Increase with complex angles, but increase limited by $\mu \rightarrow e\gamma$ \Rightarrow Complex *R* matrix doesn't change our results

э

・ロット (雪) (日) (日)

Degenerate heavy N

Hierarchical heavy N

Searching for maximal $Br(H \rightarrow \bar{\tau}\mu)$

 $\text{Log}_{10}\text{BR}(H \to \mu \overline{\tau})$

Full scan: $H \rightarrow \bar{\tau} \mu$

- M_R and μ_X real and random
- No gain in a complex scenario
- Excluded by constraints Agree with all constraints

• Br
$$(H \to \bar{\tau}\mu) \leq 10^{-10}$$

Full scan: $H \rightarrow \overline{\tau}e$ and $H \rightarrow e\overline{\mu}$

- μ_X real and random
 M_R diagonal and degenerate
- Excluded by constraints Agree with all constraints
- Br $(H \rightarrow \bar{\tau} e) \leq 10^{-10}$ Br $(H \rightarrow \bar{\mu} e) \leq 10^{-13}$
- No gain in a complex scenario

Degenerate heavy N

Hierarchical heavy N

Hierarchical heavy N

 Similar growth with M_{R3} and μ_X as in the degenerate case with M_R and μ_X

・ロット 小型 アイロット

• Excluded by $\mu \rightarrow e\gamma$ Non-perturbative Y_{ν}

•
$$\operatorname{Br}(H \to \bar{\tau}\mu) \leq 10^{-9}$$

Impact of the R matrix

э

・ロット (雪) (日) (日)

Conclusions

- $cLFV \Rightarrow Clear evidence of new physics$
- LFV Higgs decays: complementary to other cLFV searches
- Enhancement from the inverse seesaw but largest values excluded by $\mu \rightarrow e\gamma$
- $\operatorname{Br}(H \to \overline{\tau}\mu) \leq 10^{-9} 10^{-10}$ $\operatorname{Br}(H \to \overline{\tau}e) \leq 10^{-9} - 10^{-10}$ $\operatorname{Br}(H \to \overline{\mu}e) \leq 10^{-13} - 10^{-14}$
- In the inverse seesaw, LFV Higgs decays allowed by radiative LFV bounds seem not to be reachable at LHC

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Backup slides

- Inverse seesaw as an illustrative example, only one among other possibilities
- Random scan on M_R and μ_X entries
- Y_{ν} obtained from neutrino data via the Casas-Ibarra parametrization [Casas and Ibarra, 2001]

$$vY_{\nu}^{T} = V^{\dagger} \operatorname{diag}(\sqrt{M_{1}}, \sqrt{M_{2}}, \sqrt{M_{3}}) R \operatorname{diag}(\sqrt{m_{1}}, \sqrt{m_{2}}, \sqrt{m_{3}}) U_{PMNS}^{\dagger}$$

where *R* is a complex orthogonal matrix and *V* a unitary matrix that decompose $M = M_R \mu_X^{-1} M_R^T$ according to $M = V^{\dagger} \text{diag}(M_1, M_2, M_3) V^*$.

Apply the constraints

・ ロ ト ・ 雪 ト ・ 目 ト ・

Hierarchical heavy N

Leptogenesis

- Generate the baryonic (leptonic) asymmetry → Sakharov conditions [Sakharov, 1967]
 - Out of equilibrium process
 - Baryon (lepton) number violation
 - C and CP violation
- Impossible in the Standard Model: not enough CP violation [Gavela et al., 1994]
- Use the leptonic sector
 - Majorana mass term violates lepton number conservation ⇒ Passed to the baryonic sector via sphalerons (B – L conserving)
 - Neutrinos mass matrix \Rightarrow Extra sources of CP violation ($\delta_{13}, \alpha_{1,2}$)

・ロット 御マ キョマ キョン

Motivation	Inverse seesaw	LFV Higgs decays in the ISS	Degenerate heavy N	Hierarchical heavy N

