

Search for the resonant production of two Higgs bosons in the $\gamma\gamma$ bb final state at CMS

Serguei GANJOUR

CEA-Saclay/IRFU, Gif-sur-Yvette, France

On behalf of the CMS Collaboration

GDR Terascale Workshop Ecole Polytechnique June 2-4, 2014

- ${}^{\scriptstyle{\scriptsize{\scriptsize{\scriptsize{\tiny{\tiny{\tiny{m}}}}}}}}$ objective of the Higgs self-coupling measurement
- Models inspired by Warped Extra Dimensions (WED) predict new heavy resonances decayed to a pair of Higgs bosons: Radion (spin-0), KK-graviton (spin-2)
- \mathbb{R} Radion is a benchmark signal model
 - \blacksquare couples to gluons and Higgs
 - \blacksquare production CS depends on the scale Λ_R
 - $\implies {\bf mass}$ depends on the stabilization mechanism of the ED
- $\ensuremath{\mathbbms}$ KK-graviton interpretation as analysis is spin-independent
 - \blacksquare RS1 model: SM matter fields localized on the TeV brane
 - \implies bulk scenario: SM matter fields localized on the ED bulk

 $\ensuremath{\mathbb{R}}\xspace^{\ensuremath{\mathbb{R}}\xspace}$ Public CMS document: HIG-13-032

Double Higgs production among the main objectives of HL-LHC, but this process is very challenging

- Low rate makes high demands on detectors and integrated luminosity
 - \blacksquare tiny cross section $\sigma(HH) = 40 \pm 3 \,\text{fb}$ (120K)
 - finding one requires at least 500K events
 - theoretical studies suggest possible:[arXiv:1309.6318]
- Self coupling diagrams interferes destructively with double Higgs processes
 - Iook for a deficiency in a small signal

Ongoing studies suggest some sensitivity

Produced Events at $3000 \, \text{fb}^{-1}$

Mode	Yield	
bbWW	30000	
bb au au	9000	
WWWW	6000	
$\gamma\gamma$ bb	320	

 $X \to HH \to \gamma \gamma b \bar{b}$

Channel	Freq. (%)
H(bb,cc,gg)H(bb,cc,gg)	47.86
H (bb)H (bb)	33.30
$H(bb,cc,gg)H(VV^*)$	33.40
H(bb,cc,gg)H(au au)	8.77
H(bb)H(au au)	7.29
$H(VV^*)H(VV^*)$	5.83
$H(II)H(VV^*)$	3.06
H(au au)H(au au)	0.40
$H(bb,cc,gg)H(\gamma\gamma)$	0.32
$H(bb)H(\gamma\gamma)$	0.26
$H(bb,cc,gg)H(\mu\mu)$	0.03
$H(II)H(\gamma\gamma)$	0.03

Search strategy

- gluon fusion is the dominant production mode for heavy resonance
- it decays into a pair of SM Higgs

One Higgs boson decays into two photons (high resolution) and the other into two b jets (highest \mathcal{B})

☞ Benchmark signal: radion

- me no Higgs-Radion mixing
- narrow width
- $\implies \Lambda_R = 1 \text{TeV}$, $k_l = 35$
- $\Longrightarrow \mathcal{B}(R \to HH) = 25\%$
- \mathbb{R} Non-resonant backgrounds:
 - \blacksquare QCD, $\gamma+{\rm jets},~\gamma\gamma+{\rm jets}$
 - $``` DY, W\gamma\gamma, W/Z{+}\gamma(\gamma)$
 - \blacksquare t $\gamma\gamma$, tt $\gamma\gamma$, t γ jet
- \mathbb{R} Resonant backgrounds:
 - ➡ the SM Higgs samples: (ggH, VBF, VH, ttH)

Production and Decay Rates $R \rightarrow H(\gamma \gamma)H(b\bar{b})$

Mass (GeV)	σ (pb)	$N = \sigma \times \mathcal{B} \times \mathcal{L}$
300	20.6	263
350	13.0	166
400	7.5	95.6
500	3.8	49.3
900	0.62	7.9
1000	0.45	5.7

- Solution States Sta
 - \implies 19.7 fb⁻¹, $\sqrt{s} = 8 \text{ TeV}$
 - DoublePhoton dataset
 - \blacksquare same trigger as $\mathbf{H} \to \gamma \gamma$

Photon selection is based on CiC4PF $H \rightarrow \gamma \gamma$ approach

☞ Triggers

- $p_{T_{1(2)}} > 26, 18 \text{ GeV}$ (loose shower shape and iso) $p_{T_{1(2)}} > 36, 22 \text{ GeV} (non converted)$
- Photon preselection cuts
 - $p_{T1(2)} > M_{\gamma\gamma}/3(4), |\eta_{\gamma}| < 2.5$ $100 \text{ GeV} < M_{\gamma\gamma} < 180 \text{ GeV}$
- SuperTight working point from CiC analysis in $H \rightarrow \gamma \gamma$
- \square Data/MC corrections
 - trigger efficiency
 - photon ID efficiency
 - energy scale
 - energy resolution

Gamma 1 transverse momentum

S. Ganjour

 $X \to HH \to \gamma \gamma b \bar{b}$

SM $H \rightarrow \gamma \gamma$ has no tracks to LO: vertex choice comes from a BDT Presence of tracks from the $H \rightarrow b\bar{b}$ vertex choice comes from Σp_T^2

For low M_X , Σp_T^2 algorithm is more efficient

Preselection:

- \implies anti-kT jets with R=0.5
- require at least two jets with
 - $\rightarrow p_T > 25 \text{ GeV}$, $|\eta_j| < 2.5$
 - \rightarrow loose jet ID, pileup jet ID
 - $\bigstar \Delta R > 0.5$ separation from each γ
- at least one loose CSV b-tagged jet
- \square Data/MC corrections:
 - 🗯 standard JEC
 - b-tagging scale factors
- **Combinatorics:**
 - \blacksquare select the pair with the highest $p_{T_{jj}}$
 - does not shape background

INSE medium WP with CSV algorithm

Is Two mutual event categories:

 \blacksquare high purity: ≥ 2 b-tagged jets

 \blacksquare medium purity: = 1 b-tagged jet

 $X \to HH \to \gamma \gamma b \bar{b}$

A signal will appear as an excess in $M_{\gamma\gamma}, M_{bb}, M_{\gamma\gamma ii}$ spectra $\bowtie M_{\gamma\gamma ii}$ gives a natural handle on M_X background peaking around 300 GeV \blacksquare do not use to fit all M_X hypotheses Intermediate mass regime: $M_x > 400 GeV$ \blacksquare fit to $M_{\gamma\gamma jj}$ spectrum \longrightarrow M_{$\gamma\gamma$} and M_{ii} provide further discrimination Optimize mass window with the control sample Spectrum | Window (GeV)

p o o o a a a a	
M _{jj}	[90,165]
$M_{\gamma\gamma}$	[120,130]

- IF $M_{\gamma\gamma jj}$ becomes the discriminator for $M_X \sim 300 \text{ GeV}$
- ${\ensuremath{\,{}^{\mbox{\tiny CP}}}}$ Low mass regime: $M_x < 400 GeV$
 - \blacksquare fit to $M_{\gamma\gamma}$ spectrum
 - $\blacksquare M_{\gamma\gamma jj}$ and M_{jj} provide further discrimination
- Optimize mass window for each mass hypothesis with the control sample

M_X (GeV)	$M_{\gamma\gamma jj}$ window (GeV)
260	[225,280]
270	[225,295]
300	[255,335]
350	[310,395]
	${ m M}_{ m jj}$ window (GeV)
all masses	[85,155]

S. Ganjour

A control sample is constructed in data for optimization and background studies

 \mathbb{R} Control sample (CS)

- invert one photon CiC value (combines ID and isolation) to create a γjjj enriched data sample
- reweight to the blinded $\gamma\gamma$ jj data sample with respect to $p_{T\gamma1} \times p_{T\gamma2}$

The reweighted control sample and data are in reasonable agreement

The signal efficiency

- increases from 260 GeV to 900 GeV due to better photon and jet reconstruction efficiencies
- drops after 900 GeV due to merging of b-quarks into a single jet

Event yields with the cuts finalized

Sample	1 b-tag	2-btag
R(300 GeV)	21.7	18.7
ggH ($\rightarrow \gamma \gamma$)	0.19	0.02
VBF (H $\rightarrow \gamma\gamma$)	0.04	-
WH ($\rightarrow \gamma \gamma$)	0.05	-
$ZH\;(o\gamma\gamma)$	0.03	-
ttH ($ ightarrow \gamma\gamma$)	0.15	0.10
$\gamma\gamma+jets$	188	8.9
$\gamma+jets$	9.2	-
QCD	-	-
$DY + Z\gamma + W\gamma\gamma$	0.21	-
$t\gamma\gamma+tt\gamma\gamma+tt\gamma j$	1.2	0.44
Data	230	21

S. Ganjour

Signal Model

Model signal with Crystal Ball plus Gaussian lineshape

S. Ganjour

Perform Kinematic Fit to improve $M_{\gamma\gamma jj}$ mass resolution for intermediate mass resonance search

- M After all cuts, an additional constraint $M_{jj}{=}\mathbf{125}~\mathbf{GeV}$ is applied
 - the four-momentum of each jet in the dijet candidate is varied over its energy and position resolutions
 - the resonant and nonresonant backgrounds are shuffled around while the resolution of the signal is improved
 - $M_{\gamma\gamma jj}$ background spectrum remains unbiased to a certain phase space

 $X \to HH \to \gamma \gamma b \bar{b}$

Reference Background model for
$$M_{\gamma\gamma jj} \in [320, 1200]$$
:

- medium purity category: $\frac{1}{(M_{\gamma\gamma jj}^2+b)^a}$
- high purity category: $\frac{1}{(M_{\gamma\gamma ii})^{2a}}$

Bias studies: ß

- **built** truth models by fitting the control sample
- candidate functions are fit to each toy
- the pull is evaluated for signal regions about $M_{\gamma\gamma ii} = 500, 700, 1000 \text{ GeV}$

$$ext{bias} = \left| ext{median} \left(rac{ ext{N}_ ext{gen}^ ext{sig}}{\sigma_{ ext{N}_ ext{fit}^ ext{sig}}}
ight)
ight| < 0.14$$

$$M_{\gamma\gamma jj} (GeV)$$

S. Ganjour

Model background with a power law

☞ Bias studies:

- same idea as in the intermediate mass search
- background plus signal are fit to each toy
- The pull on signal yield is examined for M_H =120, 125, 130 GeV

 \bowtie SM Higgs can contribute as signal in the $M_{\gamma\gamma}$ fit

- contribute to 0.46 (0.13) events in the medium (high) purity category for M_X =300 GeV
- $^{\shortparallel}$ theory uncertainty degrades the limit by ${\sim}3\%$

Common normalization uncertainties		
Luminosity	2.6%	
Diphoton trigger acceptance	1.0%	
fit $M_{\gamma\gamma}$ - Background d	ominated	
Normalization uncertainties		
Photons selection acceptance	1.0%	
"b-tag" eff. uncertainty 2 btag cat	4.6%	
"b-tag" eff. uncertainty 1 btag cat	-1.2%	
M_{jj} and $p_{T,j}$ cut acceptance (JES & JER)	1.5%	
$M_{\gamma\gamma m jj}$ cut acceptance (PES \oplus JES & PER \oplus JER) 2%		
Shape uncertainties		
Parametric scale shift ($PES \oplus M(H)$ uncertainty)	$rac{\Delta M_{\gamma\gamma}}{M_{\gamma\gamma}}=0.45\oplus 0.35$ %	
Parametric resolution shift (RES)	$\frac{\Delta\sigma}{M_{ m eff}} = 0.25\%$	
	$\frac{\Delta \sigma}{\sigma_{\gamma\gamma}} = 22\%$	
fit $M_{\gamma\gamma m jj}$ - Background d	lominated	
Normalization uncert	ainties	
Photons selection acceptance	1.0%	
"b-tag" eff. uncertainty 2 btag cat	5.3%	
"b-tag" eff. uncertainty 1 btag cat	-1.8%	
M_{jj} and $p_{T,j}$ cut acceptance (JES & JER)	1.5%	
$M_{\gamma\gamma}$ cut acceptance (PES & PER)	0.5%	
Extra High pt norm. uncertainty 5.0%		
Shape uncertainties		
Parametric abs. shift (PES \oplus JES)	$\frac{\Delta M_{\gamma\gamma jj}}{M_{\gamma\gamma jj}} = 0.45 \oplus (0.8 \oplus 1.0) = 1.4\%$	
Parametric shift (PER \oplus JER)	$\frac{\Delta\sigma}{\sigma_{\gamma\gamma}} = 10\%$	

S. Ganjour

```
X 
ightarrow HH 
ightarrow \gamma \gamma b ar{b}
```


Radion with $\Lambda_R=1$ TeV is observed (expected) to be excluded for $M_R < 0.97(0.88)$ TeV at 95% CL

$$X
ightarrow HH
ightarrow \gamma \gamma b ar{b}$$

M_X	Observed limit (fb)	Expected limit (fb)	Observed limit (fb)	Expected limit (fb)
			High-purity category only	
260	3.14	2.12	3.54	2.41
270	2.70	2.40	3.07	2.74
300	3.98	2.73	3.64	3.14
350	1.67	2.23	2.17	2.66
400	1.97	1.66	3.40	2.01

The RS1 KK-graviton is excluded between 340 and 400 GeV at 95% CL

S. Ganjour

- Refer to the mass range $M_X \in [260, 1100]$ GeV
 - two strategies for signal extraction were employed:

→
$$M_{\gamma\gamma}$$
 fit for $M_X < 400 \text{ GeV}$

→ $M_{\gamma\gamma jj}$ fit for $M_X \ge 400 \text{ GeV}$

- \implies step toward most promising signature to measure the Higgs self-coupling
- ••• observations are compatible with expectations from Standard Model processes
- analysis designed to minimize the sensitivity to spin hypothesis
- - **matrix** radion with Λ_R =1 TeV is excluded for M_R <0.97 TeV at 95% CL
 - \implies RS1 KK-graviton is excluded [340,400] GeV at 95% CL
 - **bulk KK-graviton** requires remarkable statistics

Backup

S. Ganjour