Quelle physique à l'ILC ?

Prolégomènes

Plan

- Contexte général
- La machine
- Les détecteurs et le contexte expérimental
- Physique
 - Higgs
 - quark top
 - SUSY
 - 2 fermions
 - W/Z
 - Secteurs de Higgs étendus
 - Aspects cosmologiques

Du mouvement...

...et un cap

Du mouvement...

- Passé: 20 ans de R & D
 - Premières idées LC : 1965
 - Première réalisation SLC (SLAC): 1988-98
 - 2004: choix de la technologie froide
 - 2007: ILC Reference Design Report
 - 2009: Lettre d'intentions (LOI) concepts détecteurs ⇒ SiD et ILD
- 2013 dans le monde
 - Début 2013: « mini-TDR » détecteurs (dit DBD)
 - 12 juin 2013: remise officielle du TDR machine.
- 2013 au Japon
 - Annonce de la communauté japonaise de son intention de construire l'ILC
 - Déclaration du 1^{er} Ministre japonais
 - Création d'un groupe de travail de députés en faveur de l'ILC
 - Négociations Japon / USA
 - Choix du site japonais: été 2013.
- 2013 en Europe:
 - Déclarations de soutien des communautés allemandes et espagnoles
- Calendrier possible:
 - Fin 2013: engagement du Japon
 - 2013-2015: négociations intergouvernements
 - ~ 2015: décision
 - ~2016/18 démarrage de la construction

...et un cap: ~2026-27: commissioning.

Seminaire IPHC 2013

Qu'est-ce que l'ILC ?

- Collisionneur Linéaire International: e⁺ e⁻
 - Baseline: $\sqrt{s} = 500 \text{ GeV}$
 - Phase à 250 GeV (usine à Higgs)
 - Options : 90 GeV (GigaZ), e⁻e⁻, γγ, e⁻γ
 - ➢ Upgrade: 1 TeV
 - 2 détecteurs en « push pull » (un seul point de collision)
 - ➤ ILD et SiD
 - Luminosité:
 - ▶ 1.8 x 10³⁴ cm⁻² s⁻¹
 - ➤ 500 fb⁻¹ (4 ans)
 - Polarisation: $e^{-} = 80\%$; $e^{+} = 30\%$ (upgrade 60%)

Serious hope for the long awaited miracle to come

Collisionneur Linéaire

L'accélérateur

Seminaire IPHC 2013

Structure des faisceaux

- Structure « discontinue »
 - 5 trains/s;
 - Nombre de paquets: 1312-2625 /train
 - > 2x10¹⁰ e-/paquet
 - Temps entre les paquets: 554/366ns
 - Temps d'un train ~ 1 ms
 - Temps entre les trains ~ 200ms
 - Long temps mort entre les trains
 - Possibilité de « power cycling » pour minimiser P_{diss}
 - Possibilité de read-out entre les trains

Parameters	Value			
C.M. Energy	500 GeV			
Peak luminosity	1.8 x10 ³⁴ cm ⁻² s ⁻¹			
Beam Rep. rate	5 Hz			
Pulse duration	0.73 ms			
Average current	5.8 mA (in pulse)			
E gradient in SCRF acc. cavity	31.5 MV/m +/-20%			

ILC paramètres

			Baseline	500 GeV	Machine	1st Stage	L Upgrade	$E_{\rm CM}$ U	pgrade
Centre-of-mass energy	$E_{\rm CM}$	GeV	250	350	500	250	500	A 1000	B 1000
Collision rate Electron linac rate Number of bunches	frep flinac	Hz Hz	5 10 1312	5 5 1312	5 5 1312	5 10 1312	5 5 2625	4 4 2450	4 4 2450
Bunch population Bunch separation	$\frac{N}{\Delta t_{\rm b}}$	×10 ¹⁰ ns	2.0 554	2.0 554	2.0 554	2.0 554	2.0 366	1.74 366	1.74 366
Pulse current	$I_{\rm beam}$	mA	5.8	5.8	5.8	5.8	8.8	7.6	7.6
Main linac average gradient Average total beam power Estimated AC power	G_{a} P_{beam} P_{AC}	MV m ⁻¹ MW MW	14.7 5.9 122	21.4 7.3 121	31.5 10.5 163	31.5 5.9 129	31.5 21.0 204	38.2 27.2 300	39.2 27.2 300
RMS bunch length Electron RMS energy spread Positron RMS energy spread Electron polarisation Positron polarisation	σ_z $\Delta p/p$ $\Delta p/p$ P P_+	mm % % %	0.3 0.190 0.152 80 30	0.3 0.158 0.100 80 30	0.3 0.124 0.070 80 30	0.3 0.190 0.152 80 30	0.3 0.124 0.070 80 30	0.250 0.083 0.043 80 20	0.225 0.085 0.047 80 20
Horizontal emittance Vertical emittance	$\gamma \epsilon_x \\ \gamma \epsilon_y$	µm nm	10 35	10 35	10 35	10 35	10 35	10 30	10 30
IP horizontal beta function IP vertical beta function	$egin{smallmatrix} eta_{\mathbf{x}}^{*} \ eta_{\mathbf{y}}^{*} \end{split}$	mm mm	13.0 0.41	16.0 0.34	11.0 0.48	13.0 0.41	11.0 0.48	22.6 0.25	11.0 0.23
IP RMS horizontal beam size IP RMS veritcal beam size	$\sigma^*_x \\ \sigma^*_y$	nm nm	729.0 7.7	683.5 5.9	474 5.9	729 7.7	474 5.9	481 2.8	335 2.7
Luminosity Fraction of luminosity in top 1% Average energy loss	$L \\ L_{0.01}/L \\ \delta_{\mathrm{BS}}$	$\times 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$	0.75 87.1% 0.97%	1.0 77.4% 1.9%	1.8 58.3% 4.5%	0.75 87.1% 0.97%	3.6 58.3% 4.5%	3.6 59.2% 5.6%	4.9 44.5% 10.5%
Number of pairs per bunch crossing Total pair energy per bunch crossing	N_{pairs} E_{pairs}	×10 ³ TeV	62.4 46.5	93.6 115.0	139.0 344.1	62.4 46.5	139.0 344.1	200.5 1338.0	382.6 3441.0
		½ gradio Initial Hi	ent ggs facto	ory B	aseline	√₂ longueur (Option 1 ^e phase)	Lumi se) upgrade	ן 1TeV נ	T upgrade

Seminaire IPHC 2013

11

Facteur de qualité Q₀ d'une cavité supra

Cavités

- Enjeu: production en série
 - 7400 cavités à construire
 - ➤ (~850 cryomodules)
 - Rendement / cout
 - ➤ Gradient: 31.5 MV/m ± 20%
 - > Objectifs (GDE) atteints

- Expérience acquise

- après 20 ans de R&D
- (DESY, KEK, FNAL, etc.)
- La technologie est prête.

Progress in SCRF Cavity Gradient

Seminaire IPHC 2013

Interaction faisceau-faisceau et Beamstrahlung

- Pinch effect ~ Luminosité x2
- Beamstrahlung -
 - Paquets e[±] subissent le
 - champs intense du faisceau opposé
 - \succ Rayonnement de γ
 - ➤ ⇒e⁻e⁺ de faible impulsion transverse
 - Négligeable @ LEP
 - Conséquences
 - Conversions en paires e⁺e⁻
 - Responsable de l'essentiel de l'occupation des premières couches des détecteurs:

jusqu'à ~ 6 hits/cm²/BX

- Responsable de l'essentiel des radiations
- ~ 10^s krad/an, 10¹¹ n_{eq}(1MeV)/an
- \blacktriangleright Perte d'énergie des faisceaux $\delta_{BS} \propto \sqrt{s}$

Minimisation

- Faisceau « plat » minimise cet effet
- > Taille transverse du faisceau: $\sigma_x^* = 5.9 \text{ nm}$; $\sigma_y^* = 474 \text{ nm}$

Auguste Besson

Perte d'energie moyenne des faisceaux δ_{BS} Luminosité $\delta_{BS} \approx 0.86 \frac{er_e^3}{2m_0c^2} \left(\frac{E_{cm}}{\sigma_z}\right) \frac{N^2}{(\sigma_x + \sigma_y)^2} L = \frac{n_b N^2 f_{rep}}{4\pi \sigma_x \sigma_y}$

Beamstrahlung: effet sur E_{beam} ($\sqrt{s} = 250 \text{ GeV}$)

Angle de croisement: « crab crossing »

- Angle de croisement des faisceaux au point de collision
 - 14 mrad
 - Facilite l'extraction après la collision
 - Perte de luminosité sans crab crossing

Mais pourquoi ce cap?

Pourquoi un collisionneur linéaire e⁺e⁻ ? (1)

- Énergie dans le centre de masse bien définie
 - − beamstrahlung: RMS energy loss: δ_{BS} ~ 1% @ \sqrt{s} = 250 GeV ⇒ 90% de la luminosité a moins de 1% d'écart vs \sqrt{s} .
- Énergie dans le centre de masse ajustable
 - Flexibilité, balayages aux seuils de production ⇒ détermination des masses (top,...)
- Faisceaux polarisés (e⁻ : 80%, e⁺ : 30%)
 - Ouvre ou ferme certains canaux.
- ILC: Bruit de fond modéré
 - ILC: Background principal: beamstrahlung. = (~ 5 part/cm²/BX sur la première couche)
 - > particules de faible pT, Pas de bruit de fond QCD, pas d'empilement d'événements.
- ⇒ Environnement « propre », événements « pleinement reconstructibles »
 - Cahier des charges
 - > Saveur des jets, Lepton ID, herméticité, Particle flow
- LHC: environnement totalement différent
 - total cross section = ~ 100mb, BX time 50ns, 30 collisions pp/BX
 - donnant chacun des centaines de traces de hauts pT
 - Tenue au rayonnement impose certains choix technologiques
 - > Flux de particules impose des vitesses de lecture élevées
 - Trigger obligatoire
 - > Calorimétrie: plus « profond » (X₀ / λ) pour contenir les gerbes \Rightarrow solénoïde a l'intérieur
- Performances globales:
 - Gain d'un facteur 10 sur la résolution du trajectographe
 - Gain d'un facteur 3 sur la résolution des jets.
 - Excellent étiquetage des b et taus et capacités a étiqueter les c.

Sections efficaces comparées

Seminaire IPHC 2013

Pourquoi un collisionneur linéaire e⁺e⁻ ? (2)

- Production démocratique
 - Production d'un Higgs au LHC : 1 evt / 10 000 000 000
 - Nécessité absolue d'un trigger au LHC
 - > Accent sur les canaux riches en particules facilement identifiables/(e-, μ , γ , etc.)
 - Résolution sur l'énergie des photons cruciale
 - Production d'un Higgs a l'ILC : 1 evt / 100
 - Pas de trigger !
- Sections efficaces
 - Globalement faibles à l'ILC (ZH ~ 100 fb) ≠ LHC (~100pb)
 - Etudier tous les canaux (même hadroniques)
 - > Résolution sur l'énergie des jets cruciale
- Précision et faisabilité des calculs
 - LHC: calculs basés sur QCD
 - > protons structures function systematic errors
 - Unknown Higher order QCD perturbative corrections
 - > Non perturbative QCD effects
 - Incertitudes :
 - ➢ Souvent > ~ 10% (NNLO)
 - ILC: collisions e+ e-
 - > Corrections radiatives de l'ordre du pourcent
 - Incertitudes
 - Sous le pour mille.

Pourquoi un collisionneur lineraire e+e-? (3) Polarisation

- Polarisation
 - Les électrons gauches et droits se couplent différemment aux composantes SU(2)xU(1) du MS.
 - Avantage d'une accélération linéaire
 préserve la polarisation !
 - Def: P(-) et P(+) = polarisation des e- et e+
 - ➤ Exp: P(-) = -1 ⇐ ⇒ 100% e- gauche
- Canaux de physique
 - Z résonnance, couplage EW du quark t
 - ➤ asymétrie
 - e⁺e⁻ annihilation

 $P_{eff} = \frac{P(-) - P(+)}{1 - P(-)P(+)} \; .$

giving P_{eff} = 89% for $\mp 80\%~e^-$, $\pm 30\%~e^+$ polarisation.

 $\mathcal{L}/\mathcal{L}_0 = 1 - P(-)P(+)$,

giving $\mathcal{L}/\mathcal{L}_0 = 1.24$ for $\mp 80\% \ e^-$, $\pm 30\% \ e^+$ polarisation.

e⁻_Le⁺_R : augmentation de certains processus

 $\mathcal{L}/\mathcal{L}_0 = (1 - P(-))(1 + P(+))$,

or $\mathcal{L}/\mathcal{L}_0 = 2.34$ for $-80\%~e^-$, $+30\%~e^+$ polarisation.

- e⁻_Re⁺_L : recherches au delà du SM
 - Suppression du bruit de fond SM (WW, WW fusion)

Énergies de fonctionnement

Energy	Reaction	Physics Goal	
$91 \mathrm{GeV}$	$e^+e^- \rightarrow Z$	ultra-precision electroweak	
$160 { m GeV}$	$e^+e^- \rightarrow WW$	ultra-precision W mass	
250 GeV	$e^+e^- \rightarrow Zh$	precision Higgs couplings	
$350{-}400 { m ~GeV}$	$e^+e^- \rightarrow t\bar{t}$	top quark mass and couplings	
	$e^+e^- \rightarrow WW$	precision W couplings	
	$e^+e^- \rightarrow \nu \overline{\nu} h$	precision Higgs couplings	
$500 { m GeV}$	$e^+e^- \rightarrow f\overline{f}$	precision search for Z'	
	$e^+e^- \rightarrow t\overline{t}h$	Higgs coupling to top	
	$e^+e^- \rightarrow Zhh$	Higgs self-coupling	
	$e^+e^- \rightarrow \tilde{\chi}\tilde{\chi}$	search for supersymmetry	
	$e^+e^- \to AH, H^+H^-$	search for extended Higgs states	
$700-1000 { m ~GeV}$	$e^+e^- \rightarrow \nu \overline{\nu} hh$	Higgs self-coupling	
	$e^+e^- \rightarrow \nu \overline{\nu} VV$	composite Higgs sector	
	$e^+e^- \rightarrow \nu \overline{\nu} t \overline{t}$	composite Higgs and top	
	$e^+e^- \rightarrow \tilde{t}\tilde{t}^*$	search for supersymmetry	

Détecteurs

Cahier des charges Performances

Cahier des charges

- = higgsstrahlung (max @ \sqrt{s} =250GeV)
- Permet une mesure absolue de g_{HZZ}
- Mesure des Br
- Mesure de M_H
- Méthode de la masse de recul $(Z \rightarrow \mu \mu; Z \rightarrow ee)$

$$M_H^2 = M_{recoil}^2 = s + M_Z^2 - 2E_Z\sqrt{s}$$

- $E_Z = E_{dl} = |\mathbf{P}_1| + |\mathbf{P}_2|$ $\mathbf{P}_Z = \mathbf{P}_{dl} = \mathbf{P}_1 + \mathbf{P}_2 ,$ $M_Z^2 = M_{dl}^2 = E_Z^2 \mathbf{P}_Z^2$
- H reconstruit indépendamment de son canal de désintégration
- « impose » les performances
 - > Résolution sur l'impulsion (Z \rightarrow µµ; Z \rightarrow ee) (range ~ 20-90 GeV)
 - > Etiquetage des saveurs (H \rightarrow bb, cc, $\tau\tau$)
 - > H→ $\gamma\gamma$ ~ seulement qqs 100^s ⇒ résolution sur les γ non cruciale
- $\sqrt{s=500 \text{ GeV}}$: Canal principal de production du boson de higgs
 - = Fusion WW
 - Reconstruction H→qq
 - Reconstruction des jets

Seminaire IPHC 2013

Cahier des charges

- higgsstrahlung (max @ $\sqrt{s}=250$ GeV)
- Permet une mesure absolue de g_{HZZ}
- Mesure des Br
- Mesure de M_H
- Méthode de la masse de recul ($Z \rightarrow \mu \mu$; $Z \rightarrow ee$)

$$M_H^2 = M_{recoil}^2 = s + M_Z^2 - 2E_Z\sqrt{s}$$

- $E_Z = E_{dl} = |\mathbf{P}_1| + |\mathbf{P}_2|$ $\mathbf{P}_Z = \mathbf{P}_{dl} = \mathbf{P}_1 + \mathbf{P}_2 ,$ $M_Z^2 = M_{dl}^2 = E_Z^2 \mathbf{P}_Z^2$
- H reconstruit indépendamment de son canal de désintégration
- « impose » les performances
 - ▶ Resolution sur l'impulsion ($Z \rightarrow \mu\mu$; $Z \rightarrow ee$) (range ~ 20-90 GeV)
 - > Etiquetage des saveurs (H \rightarrow bb, cc, $\tau\tau$)
 - → H→ $\gamma\gamma$ ~ seulement qqs 100^s ⇒ resolution sur les γ non cruciale
- $\sqrt{s}=500$ GeV: Canal principal de production du boson de higgs
 - Fusion WW
 - Reconstruction H→qq
 - Reconstruction des jets

Performances requises

• Vertex

- Résolution sur le paramètre d'impact
- Résolution spatiale ~ 3 μm
- Budget de matière 0.15/0.2 % X0 / couche
- Trajectographie
 - Résolution sur l'impulsion transverse $\delta(1/p_T) \simeq 2 \times 10^{-5}/\text{GeV}/c$
- Résolution sur l'énergie des jets
 - Séparation des WW/ZZ à ~ 2.5 σ
 - Résolution ΔE_{Jet}/E_{Jet} ~ 3.5%
 - > LEP ~ 6% (2-jets events principalement)
 - ➤ meilleure acceptance à l'ILC

 $\sigma_b < 5 \oplus 10/p\beta \sin^{3/2}\theta~\mu{\rm m}$

Détecteur à pixel multicouche 1ere couche au rayon le plus petit possible Diffusion multiple: budget de matière minimisé

Trajectographe de haute résolution Champ magnétique intense

Algorithmes particle flow Calorimètre de haute granularité Calorimètre hadronique important Calorimètre dans le solénoïde Barrel plus court % LHC (boost plus faible)

26

Quelques performances

Particle Flow Algorithm (PFA) (1)

• Principe

- $E jet = E_{hadron chargés} (65\%) + E_{photon} (25\%) + E_{hadrons neutres} (10\%)$
 - Mesurer l'énergie de chaque composante des jets avec le détecteur le plus précis
 - Reconstruire individuellement chaque particule
 - Risque de confusion (double comptage)

• Conséquences

- Optimisations du PFA et limitation
 - > Confusion plus importante que la résolution du calorimètre
 - > Design optimisé pour la granularité
 - > Calorimètre compact nécessaire (extension radiale de la gerbe)
 - Efficacité de reconstruction des traces > 99%
 - > Budget de matière avant le calorimètre
 - > Calorimètre dans le solénoïde (appariement traces / Energie calo)

Particle Flow Algorithm (PFA) (2)

Seminaire IPHC 2013

ILD - The Overview

The Detectors in ILC

- Current concept: Two detectors share one interaction region -Exchange by push-pull on air-cushioned platforms
- Requires well designed integration & services

NB: Here two detectors do not increase the total integrated luminosity -The gain is in systematics (and sociological aspects!)

Frank Simon (fsimon@mpp.mpg.de)

Performances: résumé

Table I-1.2. Detector performance needed for key ILC physics measurements.

Physics Process	Measured Quantity	Critical System	Physical Magnitude	Required Performance
Zhh $Zh \rightarrow q\bar{q}b\bar{b}$ $Zh \rightarrow ZWW^*$ $ u\overline{\nu}W^+W^-$	Triple Higgs coupling Higgs mass $B(h \rightarrow WW^*)$ $\sigma(e^+e^- \rightarrow \nu\overline{\nu}W^+W^-)$	Tracker and Calorimeter	Jet Energy Resolution $\Delta E/E$	3% to 4%
$Zh \to \ell^+ \ell^- X$ $\mu^+ \mu^- (\gamma)$ $Zh + h\nu\overline{\nu} \to \mu^+ \mu^- X$	Higgs recoil mass Luminosity weighted E_{cm} BR($h \rightarrow \mu^+ \mu^-$)	μ detector Tracker	Charged particle Momentum Resolution $\Delta p_t/p_t^2$	$5 \times 10^{-5} (GeV/c)^{-1}$
$Zh,h\to b\bar{b},c\bar{c},b\bar{b},gg$	Higgs branching fractions b-quark charge asymmetry	Vertex	lmpact parameter	$5\mu m \oplus$ $10\mu m/p (\text{GeV/c}) \sin^{3/2} \theta$
SUSY, eg. $\tilde{\mu}$ decay	$ ilde{\mu}$ mass	Tracker Calorimeter μ detector	Momentum Resolution Hermeticity	

Bon mais alors et la physique ?

Brout-Englert-Higgs

MS: Secteur électrofaible / Higgs.

« physics case » : le pourquoi de ces mesures

- Boson découvert au LHC.
 - C'est un boson, probablement de spin 0 (voire 2 ?)
 - Mesure de son spin
 - II se couple aux fermions et aux bosons
- Mesures:
 - Masse: stabilité du vide ?
 - Spin, CP
- 3 types de couplages
 - Couplage aux fermions:
 - établir le « mécanisme » de Yukawa
 - > Couplage up / down ? Couplage quarks / leptons ? Couplage aux 3 générations ?
 - Couplage aux bosons:
 - établir le mécanisme de Higgs
 - Autocouplage:
 - établir la forme du potentiel de Higgs
- Questions:
 - Est-il complètement « standard » ?
 - > Quid du problème des corrections radiatives et de l'ajustement fin ?
 - Est-il inclut dans une théorie au delà du modèle standard ?
 - Élémentaire ou composite ?
 - Doublet(s) supplémentaire(s) ?
 - SUSY: est-ce vraiment le higgs léger h?

prefer J=0 over 2 and CP + over - at few σ level LHC will do good job here

Seminaire IPHC 2013
Brisure spontanée de la symétrie électrofaible

- Pas d'explication de cette brisure de symétrie dans le modèle standard
- 3 classes de modèles
 - Brisure due a la présence d'une nouvelle interaction « forte » à l'échelle du TeV
 - ➢ Observables clefs : études des bosons W/Z.
 - Higgs field composite a plus haute énergie
 - ➤ Randall-Sudrum models, Little Higgs models, etc.
 - Observables clefs: couplages W/Z/ t au Higgs
 - Supersymétrie
 - > Observables clefs: Recherches de jauginos et des Higgs supplémentaires
 - ➢ Déviations des Br % SM.

Production du boson H à l'ILC

Retour sur la méthode de la masse de recul

$$M_H^2 = M_{recoil}^2 = s + M_Z^2 - 2E_Z\sqrt{s}$$

- Avantages:
 - Mesure de la masse mH
 - ILC: $\rightarrow \Delta m_{H} \approx 30 \text{ MeV}$

LHC goal

 $\rightarrow \Delta m_{H} \approx 100 \text{ MeV} \text{ (syst. limited)}$

- Mesure de la section efficace totale σ_{ZH} $\Delta \sigma_{7H} / \sigma_{7H} = 2.5\%$
 - \blacktriangleright Mesure absolue du couplage g_{H77}
- Mesure absolue des rapports de branchement indépendante du modèle

$$\geq \mathsf{BR}_{(\mathsf{H} \to \mathsf{XX})} = (\sigma_{\mathsf{ZH}} \mathsf{x} \mathsf{BR}_{(\mathsf{H} \to \mathsf{XX})})_{\mathsf{meas}} / (\sigma_{\mathsf{ZH}})_{\mathsf{meas}}$$

+ Mesure accès au BR invisible

Rapport de Branchement théoriques du boson de BEH

A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi and M. Spira, Eur. Phys. J. C 71, 1753 (2011) [arXiv:1107.5909 [hep-ph]].

sample. The ILC, including its eventual 1 TeV stage, will allow measurement of the Higgs boson couplings to W, Z, b, c, τ , and μ , plus the loop-induced couplings to gg, $\gamma\gamma$, and γZ . The regularity of the SM that the Higgs couplings are precisely proportional to mass can thus be verified or refuted through measurements of many couplings spanning a large dynamic range.

<i>M</i> _H [GeV]	$H \to b \bar{b}$	H	$H \rightarrow \tau^+ \tau^-$	$\mathrm{H} \rightarrow \mu^+ \mu^-$	Н	$\rightarrow c\bar{c}$
124.5	5.84E-0	$1^{+3.2\%}_{-3.2\%}$ 6	5.39E-02 ^{+5.8%}	2.22E-04_	-6.0% 2.9	95E-02 ^{+12.2%}
125.0	5.77E-0	$1^{+3.2\%}_{-3.3\%}$ 6	$5.32E - 02^{+5.7\%}_{-5.7\%}$	$2.20E - 04^{+}$	-6.0% 2.9	$91E - 02^{+12.2\%}_{-12.2\%}$
125.5	5.69E-0	$1^{+3.3\%}_{-3.3\%}$ 6	$5.24E - 02^{+5.7\%}_{-5.6\%}$	$2.17E - 04^{+}$	-6.0% 2.8	87E-02 ^{+12.2%}
126.0	5.61E-0	$1^{+3.3\%}_{-3.4\%}$ 6	$5.15E - 02^{+5.6\%}_{-5.6\%}$	$2.14E - 04^{+}$	-5.9% 2.8	33E-02 ^{+12.2%}
126.5	5.53E-0	$1^{+3.4\%}_{-3.4\%}$	$5.08E - 02^{+5.6\%}_{-5.5\%}$	2.11E-04 ⁺	-5.9% 2.7 -5.7% 2.7	79E-02 ^{+12.2%}
<i>M</i> _H [GeV]	$\rm H \rightarrow gg$	$\mathrm{H} \to \gamma\gamma$	$H \to Z \gamma$	$\mathrm{H} ightarrow \mathrm{WW}$	$H \rightarrow ZZ$	$\Gamma_{\rm H}$ [GeV]
124.5	8.61E-02 ^{+10.3%}	2.28E-03 ^{+5.0%}	1.49E-03 ^{+9.1%}	2.07E-01 ^{+4.3%}	$2.52E - 02^{+4.4\%}_{-4.2\%}$	4.00E-03 ^{+4.0%}
125.0	$8.57E - 02^{+10.2\%}_{-10.0\%}$	2.28E-03 ^{+5.0%}	$1.54E - 03^{+9.0\%}_{-8.8\%}$	2.15E-01 ^{+4.3%} -4.2%	$2.64E - 02^{+4.3\%}_{-4.2\%}$	4.07E-03 ^{+4.0%} -3.9%
125.5	$8.52E - 02^{+10.2\%}_{-9.9\%}$	2.28E-03 ^{+4.9%} _{-4.8%}	$1.58E - 03^{+8.9\%}_{-8.8\%}$	2.23E-01 ^{+4.2%}	$2.76E-02^{+4.3\%}_{-4.1\%}$	4.14E-03 ^{+3.9%}
126.0	$8.48E - 02^{+10.1\%}_{-9.9\%}$	2.28E-03 ^{+4.9%} _{-4.8%}	1.62E-03 ^{+8.9%} _{-8.8%}	2.31E-01 ^{+4.1%}	$2.89E - 02^{+4.2\%}_{-4.0\%}$	4.21E-03 ^{+3.9%} _{-3.8%}
126.5	$8.42E - 02^{+10.1\%}_{-9.8\%}$	$2.28E-03^{+4.8\%}_{-4.7\%}$	1.66E-03 ^{+8.8%} -8.7%	2.39E-01 ^{+4.1%} -4.0%	$3.02E-02^{+4.1\%}_{-4.0\%}$	4.29E-03 ^{+3.8%} -3.8%

Exemples de déviation % au Modèle Standard

Maximum Deviation	ΔhVV	$\Delta h \overline{t} t$	∆h̄bb
Mixed-in Singlet	6%	6%	6%
Composite Higgs	8%	tens of %	tens of %
Minimal Supersymmetry	< 1%	3%	10%, 100%
		tan $\beta >$ no super	20 [↑] all other partners cases

- Ordre de grandeur:
 - Différence SM/BSM de quelques pourcents très souvent. (5-10%)
 - Nécessité de mesure avec une précision de cet ordre.

Higgs: nombre d'événements attendus

Figure 1: The two main Higgs production processes at a LC.

	250 GeV	350 GeV	500 GeV	1 TeV	1.5 TeV	3 TeV
$\sigma(e^+e^- \rightarrow ZH)$	240 fb	129 fb	57 fb	13 fb	6 fb	1 fb
$\sigma(e^+e^- \rightarrow H\nu_e\overline{\nu}_e)$	8 fb	30 fb	75 fb	210 fb	309 fb	484 fb
Int. <i>L</i>	$250{\rm fb}^{-1}$	$350{\rm fb}^{-1}$	500fb^{-1}	$1000 {\rm fb}^{-1}$	1500fb^{-1}	2000fb^{-1}
# ZH events	60,000	45,500	28,500	13,000	7,500	2,000
$\# H\nu_e\overline{\nu}_e$ events	2,000	10,500	37,500	210,000	460,000	970,000

HHH coupling

Signal efficiencies $\leq 10\% \rightarrow$ room for improvement? (e.g. jet finding, jetless vtx?)

production tth et top Yukawa coupling ($\sqrt{s} = 1000 \text{ GeV}$)

 $e^+e^- \rightarrow bq\bar{q}\,\bar{b}q\bar{q}\,b\bar{b}$ (hadronic) $e^+e^- \rightarrow b l \nu \, \bar{b} q \bar{q} \, b \bar{b}$ (semi lep) $e^+e^- \rightarrow b l \nu \, \bar{b} l \nu \, b \bar{b}$ (leptonic)

6 jet & 8 jet modes	Combined Sig	$\left(\frac{-g_{ttH}}{g_{ttH}}\right)_{stat}$
Cut-based	4.7	11 %
Likelihood	5.0	10 %

	500 GeV/ 1 ab-1	1000 GeV/ 2 ab ^{_1}
$\Delta g_{ttH}/g_{ttH}$	10%	4.6%

note: $\sigma(520 \text{ GeV})/\sigma(500) \text{ GeV} \sim 2 (!)$

Couplages: résumé

Full ILC Program						
			Z	$\Delta(\sigma \cdot BR)$	$/(\sigma \cdot BR)$	
^{O10} [1000fb ⁻¹ @ 1000GeV	\sqrt{s} and \mathcal{L}	$250 {\rm fb^{-1}}$	at $250 \mathrm{GeV}$	$500 {\rm fb}^{-1}$	at $500 \mathrm{GeV}$	$1 \text{ ab}^{-1} \text{ at } 1 \text{ TeV}$
E /	$(P_{e^{-}}, P_{e^{+}})$	(-0.8	$^{3,+0.3)}$	(-0.8	$^{8,+0.3)}$	(-0.8, +0.2)
- h	mode	Zh	$\nu \overline{\nu} h$	Zh	$\nu \overline{\nu} h$	$\nu \overline{\nu} h$
- 9	$h ightarrow b\overline{b}$	1.1%	10.5%	1.8%	0.66%	0.47%
10^{-2} T	$h \rightarrow c\overline{c}$	7.4%	-	12%	6.2%	7.6%
	$h \rightarrow gg$	9.1%	-	14%	4.1%	3.1%
C	$h \to WW^*$	6.4%	-	9.2%	2.6%	3.3%
- /	$h \to \tau^+ \tau^-$	4.2%	-	5.4%	14%	3.5%
- /	$h \to ZZ^*$	19%	-	25%	8.2%	4.4%
10-3	$h ightarrow \gamma \gamma$	29-38%	-	29-38%	20-26%	7-10%
	$h ightarrow \mu^+ \mu^-$	100%	-	-	-	32%
10 ⁻¹ 1 10 10 ² Mass [GeV]						

Figure 23: Expected precision from the full ILC program of tests of the Standard Model prediction that the Higgs coupling to each particle is proportional to its mass.

process	\sqrt{s} [GeV]	\mathcal{L} [fb ⁻¹]	$(P_{e^{-}}, P_{e^{+}})$	$\Delta(\sigma \cdot BR)/(\sigma \cdot BR)$	$\Delta g/g$
$t\bar{t}h$	500	500	(-0.8,+0.3)	35%	18%
Zhh	500	500	(-0.8, +0.3)	64%	104%
$t\overline{t}h$	1000	1000	(-0.8, +0.2)	8.7%	4.0%
$\nu \overline{\nu} hh$	1000	1000	(-0.8,+0.2)	38%	28%

Couplage: comparaison ILC/LHC

Figure 2.20. Estimate of the sensitivity of the ILC experiments to Higgs boson couplings in a model-independent analysis. The plot shows the 1 σ confidence intervals as they emerge from the fit described in the text. Deviation of the central values from zero indicates a bias, which can be corrected for. The upper limit on the WW and ZZ couplings arises from the constraints (2.31). The bar for the invisible channel gives the 1 σ upper limit on the *branching ratio*. The four sets of errors for each Higgs coupling represent the results for LHC (300 fb⁻¹, 1 detector), the threshold ILC Higgs program at 250 GeV, the full ILC program up to 500 GeV, and the extension of the ILC program to 1 TeV. The methodology leading to this figure is explained in [65].

top

Et autres mesures de précision

Quark top

Seminaire IPHC 2013

Masse du top: « threshold scan »

Seminaire IPHC 2013

Stabilité du potentiel de higgs.

Figure 4: Regions of stability and instability for the Higgs potential of the Standard Model, in the plane of m_h vs. m_t , from [14]. The right-hand figure show the 1, 2, and 3 σ contours corresponding to the currently preferred values of the Higgs boson and top quark masses.

W physics

W pair production

Single W production

Au delà du Modèle Standard

exemples

Recherche de Z'

Supersymétrie

• LHC:

- Recherches squarks/gluinos
- Masse du Higgs
 - Difficile d'éviter un ajustement fin (~%)

These bounds are not "robust" and don't exclude weak scale SUSY but call for non-minimal models

Hiérarchie des masses des sparticules « moins classiques »

• ILC

- Capacités secteurs sleptons / jauginos
 - Mesures des masses O(%)
 - ➤ Mesure des spins
- En cas de découvertes
 - ➢ Energie, polarisation
 - Détermination précise des propriétés
 - des particules susy découvertes

Matière sombre

Giga Z option

111	LEP/SLC/Tev/world av. [49]	ILC
$\sin^2 \theta_{\rm eff}^{\ell}$	0.23146 ± 0.00017	$\leq \pm 0.00001$
M_Z	$91.1876 \pm 0.0021 {\rm GeV}$	$\pm 0.0016 \mathrm{GeV}$
Γ_Z	$2.4952 \pm 0.0023 {\rm GeV}$	$\pm 0.0008{\rm GeV}$
$\alpha_s(m_{\rm Z}^2)$	0.1184 ± 0.0007	± 0.0005
$\Delta \rho_{\ell}$	$(0.55 \pm 0.10) \cdot 10^{-2}$	$\pm 0.05\cdot 10^{-2}$
N_{ν}	2.984 ± 0.008	± 0.004
\mathcal{A}_b	0.923 ± 0.020	± 0.001
$R_{\rm b}^0$	0.21653 ± 0.00069	± 0.00014
M_W	$80.385 \pm 0.015 { m GeV}$	$\pm 0.006 \mathrm{GeV}$

Table 16: Precision of several SM observables that can be achieved at the ILC from a high-luminosity low-energy run (GigaZ option). The left column gives the present status together with possible expectations from the LHC experiments. The values given for the $\Delta \rho$ parameter as well as for the determination of the strong coupling constant assume $N_{\nu} = 3$.

Conclusion

- La découverte d'un boson au LHC en 2012 justifie plus que jamais le programme de physique de l'ILC.
- La R & D sur l'ILC a démontré la faisabilité technique du projet.
- Le projet ILC rentre dans une période cruciale.
 - 2013-2016

Whatever might be added from LHC discoveries later in this decade, the Higgs is there. The ILC capabilities are perfectly matched to the needs of an experimental program of precision measurements on the 125 GeV Higgs boson. It is the right time, in direct response to the discovery, to call for the construction of this machine.

Michael Peskin

- Proposition japonaise:
 - Opportunité unique à saisir de la part de la communauté
 - L'avenir de la discipline se prépare aujourd'hui.

Saisir l'opportunité...

Saisir l'opportunité...

...c'est déclencher une réaction au bon moment !

Seminaire IPHC 2013

Back up

Bibliographie sommaire

- TDR (june 2013)
 - http://www.linearcollider.org/ILC/Publications/Technical-Design-Report
- Letters of Intent
 - <u>http://www.linearcollider.org/physics-detectors/Detectors/Detector-LOIs</u>
- Reference Design report (Aout 2007)
 - http://www.linearcollider.org/about/Publications/Reference-Design-Report
- Detector Baseline Document (draft dec 2012)
 - <u>http://www-flc.desy.de/dbd/</u>
- LHC/ILC interplay
 - <u>http://arxiv.org/abs/hep-ph/0410364</u>
- LC notes:
 - <u>http://www-flc.desy.de/lcnotes/</u>
- Calendrier:
 - <u>http://www.linearcollider.org/Calendar</u>
- Workshop, conferences recentes
 - ILD workshop 2012: <u>http://epp.phys.kyushu-u.ac.jp/ildws2012/</u>
 - European strategy for Particle Physics: <u>http://espp2012.ifj.edu.pl/</u>
 - Journees LC France
 - ECFA Desy.
- Sites
 - ILC: http://www.linearcollider.org/
 - News: <u>http://newsline.linearcollider.org/</u>
 - ILD: <u>http://ilcild.org/</u>
 - SID: <u>https://silicondetector.org/display/SiD/home</u>

Incertitudes sur les rapports de branchement du Higgs

A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi and M. Spira, Eur. Phys. J. C 71, 1753 (2011) [arXiv:1107.5909 [hep-ph]].

Seminaire IPHC 2013

Comparaisons entre les collisionneurs e⁺e⁻

e⁺e- colliders

Table 2.2: Overview of electron-positron colliders (*different scenarios).

Facility	Year	$E_{\rm cm}$	Luminosity	Tunnel length
		[GeV]	$[10^{34}\mathrm{cm}^{-2}\mathrm{s}^{-1}]$	[km]
ILC 250	≪2030	250	0.75	
ILC 500		500	1.8	~ 30
ILC 1000		1000	4.9	~ 50
CLIC 500	>2030	500	$2.3 (1.3)^*$	~ 13
CLIC 1400		$1400 (1500)^*$	$3.2 (3.7)^*$	~ 27
CLIC 3000		3000	5.9	~ 48
LEP3	>2024?	240	1	LEP/LHC
TLEP	>2030	240	5	80 (ring)
TLEP		350	0.65	80 (ring)

from European Strategy "Briefing Book" (red stuff added by KD)

Higgs Physics at CLIC

- Currently working towards a comprehensive assessment of the full SM Higgs programme
- $\sqrt{s} = 350 \, \text{GeV}$:
 - Model-independent mass and cross section from recoil method
 - $H \rightarrow b\overline{b}$, $H \rightarrow c\overline{c}$, $H \rightarrow gg$, $H \rightarrow \tau^+\tau^-$, $H \rightarrow WW^*$
- $\sqrt{s} = 1.4 \, \text{TeV}$:
 - $H \rightarrow b\overline{b}$, $H \rightarrow c\overline{c}$, $H \rightarrow gg$, $H \rightarrow \tau^+\tau^-$, $H \rightarrow WW^*$, $H \rightarrow Z\gamma$, $H \rightarrow \gamma\gamma$, $H \rightarrow \mu^+ \mu^-$
 - top Yukawa coupling from the ttH cross section
 - Higgs self-coupling from $HHv\overline{v}$ cross section (improvements expected)
 - Higgs production in ZZ-fusion
- $\sqrt{s} = 3.0 \,\text{TeV}$:
 - $H \rightarrow b\overline{b}$, $H \rightarrow c\overline{c}$, $H \rightarrow gg$, $H \rightarrow WW^*$, $H \rightarrow \mu^+\mu^-$
 - Higgs self-coupling from $HHv\overline{v}$ cross section (improvements expected)
- Final results expected in summer

C. Grefe, CLIC Detector - Status and Plans ECFA LC2013, Hamburg, 27.05.2012 Auguste Besson

M_h=120 GeV to 125 GeV

Cross sections at each energy

Calculate by whizard 1.95

E _{cm}	M _h	beam pol	σ(ffh)	σ(vvh)	σ(eeh)	σ(Zh)	beam param
250	120	P(-0.8,+0.3)	319.6	15.7	0.7	303.1	4 (RDR_ISR_on)
250	125	P(-0.8,+0.3)	319.4	15.9	0.5	303.0	22 (TDR_ws)
500	120	P(-0.8,+0.3)	269.3	159.7	8.6	101.1	2 (RDR)
500	125	P(-0.8,+0.3)	257.7	149.5	7.8	100.4	21 (TDR_ws)
1000	120	P(-0.8,+0.2)	458.5	409.6	22.9	26.0	18 (1000_B1b_ws)
1000	125	P(-0.8,+0.2)	447.5	399.5	22.4	25.6	18 (1000_B1b_ws)

Almost same cross section including beam parameter difference

Branching ratios (120 GeV w/ Pythia, 125 GeV w/ LHC Handbook BRs)

Mh (GeV)	bb	сс	gg	WW*	ZZ*	ττ	γγ	μμ	Zγ	ss
120 (LOI)	65.7%	3.6%	5.5%	15.0%	1.72%	8.0%	0.29%	0.03%	0.13%	0.03%
125 (DBD)	57.8%	2.7%	8.6%	21.6%	2.67%	6.4%	0.23%	0.02%	0.16%	0.04%

May 28 2013

ECFA 2013 @ DESY Higgs/EWSB session

14

Calendrier / situation politique

(transparents volés à F.Lediberder)

Inaugural Speech by PM Abe (Japanese version of 'State of the Union') Feb 28, 2013

 'Japan is driving global innovation in cutting-edge areas, including among others the world's first production test of marine methane hydrate, a globally unparalleled rocket launch success rate, and our attempts to develop the most advanced accelerator technology in the world.'

PM Abe at the 83rd session of Diet

Q&As at the Diet Mar 4, 2013

PM Abe's answer on the ILC

'We will pull along the innovations through accelerator technologies that are at the global state-of-the-art. The ILC is part of it and it is a project that inspires great dreams. On the other hand, it requires a large amount of funding.' 'As the government, we will proceed checking the progress of the international design activities at researchers' level .'

Science-Industry Alliance

- 'Advanced Accelerator Association for promoting science and technology (AAA)'
 - Established in 2008
 - Headed by a former CEO of Mitsubishi Heavy Industries: Mr. Nishioka
 - Hitachi, Toshiba, Mitsubishi, etc.
 - ~90 industries + ~30 universities
- Intensive activities:
- Lecture series, symposiums
- Civil engineering study
- Studies on large projects
- Science-industry cooperation

Activities of the new Federation (Diet)

General meetings

Feb 1. 2013 : re-establishing the federation

Huge attendance:

45 diet members and 25 proxies + researchers/companies

- Feb 26, 2013 : re-organization
- March 25, 2013 : talk by Lyn Evans (LC collaboration director).
- Apr : two general meetings planned

Mini-lecture series
 eg: March 13, by Sakue Yamada etc.

Visit Washington DC w/ two Ministers
 Apr 30, 2013
 goal : enlarge US-Japan collaboration on the ILC

Joint symposium US-Japan w/industries planned

Machine

Coûts

- Evaluation détaillée dans le TDR
 - Exprime en ILCU (=1\$ 1^{er} janvier 2012)

The Value estimate for the cost of the ILC design as presented in this *Technical Design Report*, averaged over the three regional sites, is 7,780 MILCU. This may be compared with the escalated RDR estimate of 7,266 MILCU.

- Machine:
 - Linac 68% -> cout précis grâce à XFEL
 - Béton -> 30% du cout ?
- Détecteur

Costs

Included	Excluded
Construction, installation, and hardware commissioning costs for a 500 GeV machine	Beam commissioning, operations, decommissioning
Tooling-up industry, final engineering designs and construction management	Engineering, design, or preparation ac- tivities that can be accomplished before construction starts, such as research & development, and prototype systems tests
Construction of all conventional fa- cilities, including the tunnels, surface buildings, access shafts and other facilities	Pre-construction costs (e.g. archi- tectural engineering, conceptual and construction drawings, component and system designs), surface land ac- quisition and underground easement acquisition costs
Construction of the detector-assembly building, underground experimental halls and detector-access shafts	Experimental detectors
Explicit labour, including that for man- agement and administrative personnel.	Taxes, contingency and escalation
Costs for upgrading the machine to 1 TeV which would be very difficult to provide after construction of the 500 GeV machine (e.g., beam dumps, BDS length).	Additional costs due to potential over- heads related to management of in-kind contributions

Sites possibles

- Un site approprié
 - Site stable géologiquement sur 31km (50km)
 - Profondeur 50-400m
 - Absence de failles, sol granitique
 - Infrastructures (accès, etc.)
 - Soutien local et politique
- Un peu d'électricité...
 - 161MW @ 500GeV (286MW @ 1TeV)
- TDR: 5 sites envisagés:
 - Dubna
 - CERN
 - Kitakami (Sendai)
 - Sefuri (Fukuoka)
 - Fermilab
- Japon:
 - Choix entre les 2 sites: juillet 2013

Figure 11.17 The potential location of ILC in the Geneva region.

- · Kitakami site: located in lwate prefecture (Tohoku district);
- Sefuri site: located in Fukuoka & Saga prefecture (Kyushu district).

Real-World Challenges: Cost

 The distribution of the cost reflects the importance of particle flow in the detector design - Calorimeters account for ~ 50% of total cost
Remark on Photon collider Higgs factories

Photon collider can measure

 $\Gamma(H \rightarrow \gamma \gamma)^* Br(H \rightarrow bb, ZZ, WW), \Gamma^2(H \rightarrow \gamma \gamma)/\Gamma_{tot}, CP \text{ properties}$ (using photon polarizations). In order to get $\Gamma(H \rightarrow \gamma \gamma)$ one needs $Br(H \rightarrow bb)$ from e+e-. This gives also Γ_{tot} .

e+e- can also measure Br(bb, cc, gg, $\tau\tau$, $\mu\mu$, invisible), Γ_{tot} , less backgrounds due to tagging of Z.

Therefore PLC is nicely motivated in combination with e+e-: parallel work or second stage.

Physics motivation for PLC (independent on physics scenario) (shortly)

In γγ, γe collisions compared to e⁺e⁻

- 1. the energy is smaller only by 10-20%
- 2. the number of events is similar or even higher
- access to higher particle masses (H,A in γγ, charged and light neutral SUSY in γe)
- 4. higher precision for some phenomena (Γγγ, CP-proper.)
- 5. different type of reactions (different dependence on theoretical parameters)

Seminaire IPHC 2013

(Telnov, ECFA-DESY 2013) 73

Le tunnel

Calendrier Machine (TDR 2013)

Table 14.7 The fourth set of level-	Milestone	Flat topography	Mountainous region
1 milestones.	Civil Engineering work complete	Y4, Q4 X7, Q3	Y5, Q1
	Accelerator ready for early commissioning (BDS	5 Y7, Q2	Y8, Q2
	and ML up to PM7/AH1) ILC ready for full commissioning (whole acceler	- Y9, Q4	Y9, Q4
Semina	ILC ready for physics programme	Y10, Q4	Y10, Q4

Calendrier Zone d'interaction et detecteurs

Using the CMS concept, the ILD detector is to be assembled in a surface hall before being lowered to the underground facilities. This allows work underground to proceed unaffected by the construction of the detector.

Table 14.8 The fifth set of level-1	Milestone	Flat topography	Mountainous region
milestones.	Civil Engineering work complete	Y4, Q4	Y5, Q1
	Common Facilities installed	Y7, Q3	Y8, Q2
	Accelerator ready for early commissioning	Y7, Q2	Y8, Q2
	(BDS and ML up to PM7/AH1)		
	ILC ready for full commissioning	Y9, Q4	Y9, Q4
	(whole accelerator available)		
	ILC ready for beam	Y10, Q4	Y10, Q4
	Caverns ready for beneficial occupancy	Y7, Q1	
	Detector ready to be lowered	Y7, Q1	
	Detector ready for commissioning with beam	Y8, Q3	

ILC

Seminaire IPHC 2013

Auguste Besson

78

Gradient maximal

Quand on crée un champ accélérateur E_{acc} dans la cavité, on crée également des champs sur la surface interne de la cavité, qui prennent des valeurs maximales notées B_{pk} et E_{pk}

Pour que le niobium reste dans l'état supraconducteur, il faut que $B_{pk} \le Bc_{RF}$, sinon la cavité perd son caractère supraconducteur, et c'est le « quench »

Positron Source (central region)

converted in thin target into e+e- pairs

100

150

Drive Electron Beam Energy (GeV)

200

250

50

0

0.00E+00

300

ilc

Damping Rings

Circumference		3.2	km
Energy		5	GeV
RF frequency		650	MHz
Beam current		390	mA
Store time		200 (100)	ms
Trans. damping time		24 (13)	ms
Extracted emittance	x	5.5	μm
(normalised)	y	20	nm
No. cavities		10 (12)	
Total voltage		14 (22)	MV
RF power / coupler		176 (272)	kW
No.wiggler magnets		54	
Total length wiggler		113	m
Wiggler field		1.5 (2.2)	Т
Beam power		1.76 (2.38)	MW

Values in () are for 10-Hz mode

Many similarities to modern 3rd-generation light sources

Seminaire IPHC 2013

[•	the Big Jump from SLC to ILC:						
In Beam Power (<i>P_{beam}</i>) X 100, collision beam size (σ* _y) 1/100 and Luminosity (<i>L</i>) X 10 ⁴							
		SLC / ILC	Comparis	on			
		SLC	ILC				
	$E_{\rm cm}$	100	500	GeV			
	P_{beam}	0.04	5	MW			
	σ_y^*	500	6	nm			
	$\delta E/E_{\rm bs}$	0.03	4	%			
	L	3×10 ⁻⁴	1.8	10 ³⁴ cm ⁻² s ⁻¹			

détecteurs

ILD - Dimensions

Seminaire IPHC 2013

Sid / ILD

Common features

- Full angular coverage including for flavor tagging
- Large SC solenoidal magnetic field `a la CMS' B>3 T ensuring excellent momentum resolution
- Almost `transparent' trackers with calorimeters included inside the coil minimizing material effects
- Imaging calorimetry for PFA with a very large number of electronic channels(>10⁸)
- Push-pull philosophy insuring scientific and technical safety

Augi

Seminaire IPHC 2013

F. Richard June 2013

11

Calorimetry Tree

Capteurs CMOS pour le détecteur de vertex de l'ILD

- Cahier des charges:
 - Résolution spatiale/budget de $\sigma_b < 5 \oplus 10/p\beta \sin^{3/2} \theta \ \mu m$.
 - Occupation 1^e couche: ~ 5 part/cm²/BX ⇒ occupation de qqs % max
 - Radiations: O(100 krad) et O(1x10¹¹ n_{eq (1MeV)}) / an
 - Puissance dissipée: 600W/12W (Power cycling, ~3% duty cycle)
- Concept de base:
 - 3 x double couches
 - Gain budget matière / alignement.
- 2 lignes de développement:
 - Double Couche interne : priorité à la vitesse / résolution
 - Compromis vitesse vs résolution spatiale
 - 2 faces: optimisée resolution / optimisée vitesse (pixels allongés)
 - > Pitch $16x16\mu m^2/16x64\mu m^2$ + encodage binaire de la charge
 - > $t_{read-out} \sim 50 \mu s / 10 \mu s$; $\sigma_{res} \sim 3 \mu m / 6 \mu m$
 - Couches externes: priorité à la puissance dissipée
 - Compromis P_{diss} vs résolution spatiale
 - \blacktriangleright Pitch ~ 35x35 μ m² + ADC 3-4 bits
 - \succ t_{read-out} ~ 100 µs

Détecteur de vertex

Résolution sur le paramètre d'impact

 $\sigma_b < 5 \oplus 10/p\beta \sin^{3/2}\theta \ \mu m.$

- Résolution spatiale première couche

➤ ~ 3 μm

- A spatial resolution near the IP better than 3 $\mu{\rm m}$;
- A material budget below $0.15\% X_0$ /layer;
- A first layer located at a radius of $\sim 1.6~{\rm cm};$
- A pixel occupancy not exceeding a few %, including backgrounds.

	R (mm)	$ z \pmod{2}$	$ \cos \theta $	σ (μ m)	Readout time (μs)
Layer 1	16	62.5	0.97	2.8	50
Layer 2	18	62.5	0.96	6	10
Layer 3	37	125	0.96	4	100
Layer 4	39	125	0.95	4	100
Layer 5	58	125	0.91	4	100
Layer 6	60	125	0.9	4	100
Layer 4 Layer 5 Layer 6	39 58 60	125 125 125	0.95 0.91 0.9	4 4 4	100 100 100

Table 2.1.1: ILD vertex detector parameters. The resolution and readout times are for the CMOS sensor option.

Capteurs CMOS: Principes et état de l'art.

• Principes

- Signal créé dans une couche épitaxiale
 - ~10-20 μm, faible dopage, faible résistivité
 - \succ ~ 80 e- / μ m \Rightarrow charge totale ~ O(1000 e-)
- Diffusion thermique des e
 - zone déplétée limitée
- Réflexion aux interface
 - substrats et P-well au dopage eleve
- Charge collectee par des puits-N
 - ➢ Partage des charges entre les puits ⇒ résolution
- Collecte continue des charges
 - > pas de temps mort
- Avantages
 - Granularité
 - > Pixels pitch jusqu'à 10 x 10 μ m² si nécessaire
 - ($\Rightarrow r \acute{e} solution$ spatiale ~ 1 $\mu m)$
 - Budget de matière
 - Partie active ~ 10-20 μm
 - > Amincissement jusqu'à 50 μ m routinier
 - Prétraitement du signal dans le pixel
 - Compacité, flexibilité, flux de données
 - Fonctionnement
 - Jusqu'à ~30-40 °C si nécessaire
 - Production industrielle
 - Couts, rendements
 - rythme des soumissions (runs multiprojets)
 - évolution de la technologie

- Mode de lecture « volet roulant »
 - -Double échantillonnage corrélé dans le pixel (CDS)
 - -Préamplification dans le pixel
 - -Lecture parallèle des colonnes
 - Temps de lecture = #lignes x $t_{r.o.}$ d'une ligne
 - -Discriminateurs en bout de colonne
 - -Sparsification en bout de colonne
- ⇒ Préserve granularité / budget matière

Seminaire IPHC 2013

Etiquetage des saveurs b/c

- Etiquetage des b et de c
 - Simulation ILD.
 - Arbre de décision boosté
 - Echantillons
 - ≻ Z→qq et ZZZ→qqqqqq
 - (tous de la même saveur)
 - 3 étiquetages: b (%udsc); c(udsb); c(%b)

- Major breakthroughs with respect to existing detectors with many available new technologies
- 1st layer at R<2cm (5cm at LEP)</p>
- Detectors with very low material budget ~0.2%
 X0 per layer (~0.2mm Si) possible at ILC with low radiation
- Easy cooling with power pulsing
- Not only b/c separation is optimal but b charge determination becomes possible and very useful to measure t/b asymmetries

Seminaire IPHC 2013

ILC Detectors Have Advanced Through This Development Process

 Evolution of ILC detector concepts is captured in a series of documents

Detector Outline Document2006Detector Concept Report2007Letters of Intent (LoI)2009Detailed Baseline Design2012

* Detector Lol (2009)

Detailed detector description Status of critical R&D Full GEANT4 simulation Benchmark analyses Costs

NOW– Detailed Baseline Design
 volume 4 of the ILC TDR

Beamstrahlung et occupation des détecteurs (ILD)

Sub-detector	Units	Layer	500 GeV	1000 GeV
VTX-DL	$hits/cm^2/BX$	1	6.320 ± 1.763	11.774 ± 0.992
		2	4.009 ± 1.176	7.479 ± 0.747
		3	0.250 ± 0.109	0.431 ± 0.128
		4	0.212 ± 0.094	0.360 ± 0.108
		5	0.048 ± 0.031	0.091 ± 0.044
		6	$\textbf{0.041} \pm \textbf{0.026}$	0.082 ± 0.042
SIT	$hits/cm^2/BX$	1	0.0009 ± 0.0013	0.0016 ± 0.0016
		2	0.0002 ± 0.0003	0.0004 ± 0.0005
FTD	hits/cm 2 /BX	1	0.072 ± 0.024	0.145 ± 0.024
		2	0.046 ± 0.017	0.102 ± 0.016
		3	0.025 ± 0.009	0.070 ± 0.009
		4	0.016 ± 0.005	0.046 ± 0.007
		5	0.011 ± 0.004	0.034 ± 0.005
		6	0.007 ± 0.004	0.024 ± 0.006
		7	0.006 ± 0.003	0.022 ± 0.006
SET	hits/BX	1	0.196 ± 0.924	0.588 ± 2.406
		2	$\textbf{0.239} \pm \textbf{1.036}$	$\textbf{0.670} \pm \textbf{2.616}$
трс	hits/BX	-	216 ± 302	465 ± 356
ECAL	hits/BX	-	444 ± 118	1487 ± 166
HCAL	hits/BX	-	18049 ± 729	54507 ± 923

Seminaire IPHC 2013

Etiquetage taus

Taus

A neural network approach based on nine input variables is used to identify the tau decays modes. The variables include: the total energy of the identified photons, the invariant mass of the track and all identified photons (Figure III-6.7a); and electron and muon particle identification variables based on calorimetric information and track momentum.

T-LL 111 6 2			
Purity and efficiency	Mode	Efficiency	Purity
of the main tau decay mode selections	$e\nu\nu$	98.9%	98.9%
	$\mu u u$	98.8%	99.3 %
	πu	96.0 %	89.5 %
	$\rho \nu$	91.6 %	88.6 %
	$a_1 \nu$ (1-prong)	67.5 %	73.4 %
	$a_1\nu$ (3-prong)	91.1 %	88.9 %

Table III-6.3 shows the efficiency and purity achieved for the six main tau decay modes. The selection efficiency is calculated with respect to the sample of $\tau^+\tau^-$ after the requirement that the two tau candidates are almost back-to-back. The purity only includes the contamination from other $\tau^+\tau^-$ decays. The high granularity and the large detector radius of ILD results in excellent separation.

ILD: TPC

Table III-2.4 Performance and design parameters for the TPC with standard electronics and pad readout.

Parameter

Geometrical parameters	$egin{array}{ccc} r_{\mathrm{in}} & r_{\mathrm{out}} & z \\ 329 \ mm & 1808 \ mm & \pm 2350 \ mm \end{array}$			
Solid angle coverage	up to $\cos heta~\simeq~0.98$ (10 pad rows)			
TPC material budget	$\simeq~0.05~{ m X_0}$ including outer fieldcage in r			
	$<~0.25~{ m X_0}$ for readout endcaps in z			
Number of pads/timebuckets	\simeq 1-2 $ imes$ 10 $^{6}/$ 1000 per endcap			
Pad pitch/ no.padrows	$\simeq~1 imes$ 6 mm 2 for 220 padrows			
$\sigma_{ m point}$ in $r\phi$	$\simeq~60~\mu{ m m}$ for zero drift, $<~100~\mu{ m m}$ overall			
$\sigma_{ m point}$ in rz	$\simeq 0.4 - 1.4$ mm (for zero – full drift)			
2-hit resolution in $r\phi$	$\simeq 2 {\rm mm}$			
2-hit resolution in rz	$\simeq 6 \text{ mm}$			
dE/dx resolution	$\simeq 5~\%$			
Momentum resolution at $B=3.5 \text{ T}$	$\delta(1/p_t)~\simeq~10^{-4}/{ m GeV/c}$ (TPC only)			

Higgs

Higgs sector parameters

The Higgs mass and the vacuum expectation value of the Higgs field can be written in terms of the two free parameters of the Higgs potential $V= \frac{1}{2} \ \mu^2 \ \Phi^2 + \frac{1}{4} \ \lambda \ \Phi^4$:

$$v^2 = \frac{\mu^2}{2 \lambda} \qquad M_H^2 = 2v^2 \lambda$$
 Also, since
$$\frac{G_F}{\sqrt{2}} = \frac{g^2}{8M_W^2} = \frac{1}{2v^2}$$

the well measured value of G_F gives: $v = (\sqrt{2}G_F)^{-1/2} = 246 \text{ GeV}$ \Rightarrow typical scale of EW symmetry breaking!

After choosing the vacuum: $M_{W^{\pm}} = gv/2$ and $M_Z = \frac{1}{2}v(g'^2+g^2)^{\frac{1}{2}}$ $\Rightarrow \qquad \frac{M_W}{M_Z} = \frac{g'}{(g^2+g'^2)^{\frac{1}{2}}} = \cos \theta_W$ (prediction!!)

Higgs Br

A. Denner, S. Heinemeyer, I. Puljak, D. Rebuzzi and M. Spira, Eur. Phys. J. C 71, 1753 (2011) [arXiv:1107.5909 [hep-ph]].

$$--- \left(\frac{i}{m_f} \frac{m_f}{v} \delta_{ij} - \Gamma \left(H \to f\bar{f} \right) = \frac{M_H}{8\pi} \left(\frac{M_f}{v} \right)^2 N_c \left(1 - \frac{4M_f^2}{M_H^2} \right)^{\frac{3}{2}}$$

$$\frac{H}{2i} \sum_{W} \frac{M_{W}^{2}}{v} g_{\mu\nu} \Gamma (H \to WW) = \frac{M_{H}}{16\pi} \left(\frac{M_{H}}{v}\right)^{2} \left(1 - \frac{4M_{W}^{2}}{M_{H}^{2}}\right)^{\frac{1}{2}} \times \left[1 - 4\left(\frac{M_{W}^{2}}{M_{H}^{2}}\right) + 12\left(\frac{M_{W}^{2}}{M_{H}^{2}}\right)^{2}\right]$$

$$\frac{H}{2v} \sum_{z} \frac{M_{Z}^{2}}{2v} g_{\mu\nu} \quad \Gamma \left(H \to ZZ \right) = \frac{M_{H}}{32\pi} \left(\frac{M_{H}}{v} \right)^{2} \left(1 - \frac{4M_{Z}^{2}}{M_{H}^{2}} \right)^{\frac{1}{2}} \times \left[1 - 4 \left(\frac{M_{Z}^{2}}{M_{H}^{2}} \right) + 12 \left(\frac{M_{Z}^{2}}{M_{H}^{2}} \right)^{2} \right]$$

Higgs self coupling

$$\mathcal{L} = \mathcal{L}_{free} + \mathcal{L}_{int} \tag{10}$$

101

The free lagrangian contains the terms,

$$\mathcal{L}_{free} = \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - m_{H}^{2} H^{2} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + q^{2} v^{2} A_{\mu} A^{\mu}$$
(11)

while the lagrangian that includes the interactions is,

$$\mathcal{L}_{int} = q^2 A_\mu A^\mu \left(\sqrt{2}vH + \frac{1}{2}H^2\right) - \lambda \left(\sqrt{2}vH^3 + \frac{1}{4}H^4\right) \tag{12}$$

From the free lagrangian in eq. (11) we see that the Higgs boson H has a mass proportional to the quartic self coupling λ . In addition, a mass has been generated for the gauge boson $m_A = 2q^2v^2$, which is proportional to the Higgs vev. Notice that this mass cannot be included by hand in the lagrangian since it is not gauge invariant.

Schematically, the interactions in eq. (12) are represented by the following Feynman rules,

Seminaire 1

200-500 GeV baseline parameters (TDR 2013)

Table 2.1. Summary table of the 200–500 GeV baseline parameters for the ILC. The reported luminosity numbers are results of simulation [12]

Centre-of-mass energy		E_{CM}	GeV	200	230	250	350	500
Luminosity pulse repetition rate			Hz	5	5	5	5	5
Positron production mode				10 Hz	10 Hz	10 Hz	nom.	nom.
Estimated AC power		P_{AC}	MW	114	119	122	121	163
Bunch population		N	$\times 10^{10}$	2	2	2	2	2
Number of bunches		n_b		1312	1312	1312	1312	1312
Linac bunch interval		Δt_b	ns	554	554	554	554	554
RMS bunch length		σ_z	μm	300	300	300	300	300
Normalized horizontal en	nittance at IP	$\gamma \epsilon_x$	μm	10	10	10	10	10
Normalized vertical emit	tance at IP	$\gamma \epsilon_y$	nm	35	35	35	35	35
Horizontal beta function	at IP	β_x^*	mm	16	14	13	16	11
Vertical beta function at IP		β_u^*	mm	0.34	0.38	0.41	0.34	0.48
RMS horizontal beam siz	ze at IP	σ_x^*	nm	904	789	729	684	474
RMS vertical beam size a	at IP	σ_{y}^{*}	nm	7.8	7.7	7.7	5.9	5.9
Vertical disruption param	neter	D_y		24.3	24.5	24.5	24.3	24.6
Fractional RMS energy le	oss to beamstrahlung	δ_{BS}	%	0.65	0.83	0.97	1.9	4.5
Luminosity		L	$ imes 10^{34}~{ m cm^{-2}s^{-1}}$	0.56	0.67	0.75	1.0	1.8
Fraction of L in top 1%	E_{CM}	$L_{0.01}$	%	91	89	87	77	58
Electron polarisation		P_{-}	%	80	80	80	80	80
Positron polarisation		P_+	%	30	30	30	30	30
Electron relative energy	spread at IP	$\Delta p/p$	%	0.20	0.19	0.19	0.16	0.13
Positron relative energy	spread at IP	$\Delta p/p$	%	0.19	0.17	0.15	0.10	0.07

"Required" accuracy

$$\frac{g_{hVV}}{g_{h_{SM}VV}} \simeq 1 - 0.3\% \left(\frac{200 \text{ GeV}}{m_A}\right)^4$$

$$\frac{g_{htt}}{g_{h_{SM}tt}} = \frac{g_{hcc}}{g_{h_{SM}cc}} \simeq 1 - 1.7\% \left(\frac{200 \text{ GeV}}{m_A}\right)^2$$

$$\frac{g_{hbb}}{g_{h_{SM}bb}} = \frac{g_{h\tau\tau}}{g_{h_{SM}\tau\tau}} \simeq 1 + 40\% \left(\frac{200 \text{ GeV}}{m_A}\right)^2. \tag{13}$$

At the lower end of the range, the LHC experiments should see the deviation in the *hbb* or $h\tau\tau$ coupling. However, the heavy MSSM Higgs bosons can easily be as heavy as a TeV without fine tuning of parameters. In this case, the deviations of the gauge and up-type fermion couplings are well below the percent level, while those of the Higgs couplings to b and τ are at the percent level,

$$\frac{g_{hbb}}{g_{h_{\rm SM}bb}} = \frac{g_{h\tau\tau}}{g_{h_{\rm SM}\tau\tau}} \simeq 1 + 1.7\% \left(\frac{1 \text{ TeV}}{m_A}\right)^2. \tag{14}$$

$$\frac{g_{hgg}}{g_{h_{SM}gg}} \simeq 1 + 1.4\% \left(\frac{1 \text{ TeV}}{m_T}\right)^2, \quad \frac{g_{h\gamma\gamma}}{g_{h_{SM}\gamma\gamma}} \simeq 1 - 0.4\% \left(\frac{1 \text{ TeV}}{m_T}\right)^2, \quad (17)$$

$$\frac{g_{hVV}}{g_{h_{SM}\gamma\gamma}} \simeq 1 - 3\% \left(\frac{1 \text{ TeV}}{f}\right)^2 \qquad \text{and for a fermionic top-partner,}$$

$$\frac{g_{hff}}{g_{h_{SM}ff}} \simeq \begin{cases} 1 - 3\% \left(\frac{1 \text{ TeV}}{f}\right)^2 & (\text{MCHM4}\right) & \frac{g_{hgg}}{g_{h_{SM}gg}} \simeq 1 + 2.9\% \left(\frac{1 \text{ TeV}}{m_T}\right)^2, & \frac{g_{h\gamma\gamma}}{g_{h_{SM}\gamma\gamma}} \simeq 1 - 0.8\% \left(\frac{1 \text{ TeV}}{m_T}\right)^2. \quad (18)$$

$$(\text{MCHM5}).$$

b-tagging CMS vs ILD

Figure 6. Performance curves obtained from simulation for the algorithms described in the text. (a) lightparton- and (b) c-jet misidentification probabilities as a function of the b-jet efficiency. Jets with $p_T > 60 \text{ GeV}/c$ in a sample of simulated multijet events are used to obtain the efficiency and misidentification probability values.

Higgstrahlung: theta distribution

$$\frac{\mathrm{d}\sigma(\mathrm{e^+e^-} \to ZH)}{\mathrm{d}\cos\theta} \sim \lambda^2 \sin^2\theta + 8M_Z^2/s \; ,$$

Electro-weak fit with Giga-Z

Triple Higgs coupling et λ

Тор
Top: Pole mass

What is the top mass?

Particle masses are **not** direct physical observables one can only measure cross sections, decay rates, ...

Additional problem for the top mass:

what is the mass of a colored object?

Top pole mass is not IR safe (affected by large long-distance contributions), cannot be determined to better than $O(\Lambda_{QCD})$

Measurement of m_t :

- At Tevatron, LHC: kinematic reconstruction, fit to invariant mass distribution
 ⇒ "MC" mass, close to "pole" mass?
- At the ILC: unique possibility threshold scan \Rightarrow threshold mass \Rightarrow SAFE! transition to other mass definitions possible, $\delta m_t \lesssim 100 \text{ GeV}$

Sven Heinemeyer (CSIC, Spain) ILC TDR Launch, CERN, 12.06.2013

18