

RADIOGRAAFF : UNE PLATEFORME D'IRRADIATION PROTONS POUR LES ÉTUDES DE RADIOBIOLOGIE

Julie Constanzo

IPNL • Groupe CAS-PhaBio Encadrement de thèse Directeur de thèse : Denis Dauvergne Co-directeur de thèse : Michael Beuve Equipe encadrante Mireille Fallavier

Réunion du réseau plateformes d'irradiation 18/07/2013

- Contexte scientifique du projet et objectifs
- Aspects physique et instrumentation
 - Description de la ligne d'irradiation
 - Evaluation des performances : méthodologie
- Evaluation des performances : résultats
- Aspects biologiques
 - Développements techniques
 - Recherche de protocoles
 - Premiers résultats

• Contexte scientifique du projet et objectifs

- Aspects physique et instrumentation
 - Description de la ligne d'irradiation
 - Evaluation des performances : méthodologie
- Evaluation des performances : résultats
- Aspects biologiques
 - Développements techniques
 - Recherche de protocoles
 - Premiers résultats

Contexte scientifique

L'accélérateur Van de Graaff 4 MV de l'IPNL délivre, entre autre, des protons d'énergie nominale de 3,5 MeV

- Efficacité biologique relative
 - EBR_{α} (protons et helium)
 - [EBR_{10%}] = 1,82 pour des protons de 3 MeV (Belli)
 - [EBR_{10%}] = 1,2-1,6 pour des protons de 3 MeV (Paganetti) Protons

RBE en fonction du LET dans des cellules V79 (Les protons sont représentés par des ronds noirs)

[Belli et al., 1998]

RBE en fonction du LET dans des cellules V79

[Paganetti et al., 2001]

Contexte scientifique

• Intérêts scientifiques

- Effet cœur de trace => concentration de l'énergie
- Hadronthérapie carbone :
 - EBR₁₀ = 3-4 environ carbone 10MeV/u
 - EBR₁₀ = 1,5 carbone SOBP ;
- Hadronthérapie proton :
 - EBR₁₀ = 1,82 protons 3 MeV [Belli et al., 1998]
 - EBR₁₀ = 1,4 pour des protons de 3 MeV [Paganetti et al., 2001]
- Neutrons rapides (>MeV) -> radioprotection, neutronthérapie

Avantages

- Coût
- Faisceau à disposition proche des biologistes
- Difficulté
 - Protocole délicat

Objectifs et cahier des charges

- 1. Objectifs fixés
 - lons
 - Protons : ~ 3 MeV
 - Dosimétrie (+/- 5%)
 - Dose absolue : 2 Gy à 10 Gy
 - Dose relative : uniformité de la dose
 - Débit de dose : 2 Gy/min (clinique)
 - Champ d'irradiation
 - Largeur \geq 2 cm
 - Energie
 - Energie/TEL des protons constants dans les cellules à 10% près
 - H[3MeV] => 150 micromètres dans l'eau
 - TEL/Energie varie fortement

Position max des cellules (si 20 µm)

Objectifs et cahier des charges

2. Contrôle du faisceau

- •Réduction/élargissement du faisceau
- •Dosimétrie
- •Peu d'éléments dans le faisceau
- •Matériaux homogènes

3. Irradiation de cellules : les contraintes

- •Extraire le faisceau à l'air
- •Présence de milieu de culture
- •Pénétration des protons
- Irradiation directe / monocouche des cellules
- •Atmosphère contrôlée
- •Passeur d'échantillons adapté
- •Enceinte thermostatée
- •Laboratoire de biologie cellulaire

•Temps d'irradiation = le plus

•Absence de milieu de culture

court possible (température/pH/ humidité)

Macrofaisceau

- <u>Balayage électrostatique</u>
 - -Difficultés pour la mise en place d'un protocole de radiobiologie :
 - burst => difficulté de monitorage => problèmes de dosimétrie
 - structure temporelle du faisceau -> structure spatiale observée

Evaluation de l'inhomogénéité du balayage à l'aide de films radiosensibles sur la ligne d'irradiation du groupe ACE (IPNL), expérience octobre 2011.

- <u>Diffusion Rutherford</u>
 - + pas les problèmes précédents
 - perte d'énergie (oblige un contrôle)

Solution retenue

permet une diminution du flux et une homogénéisation du faisceau

- Contexte scientifique du projet
- Aspects physique et instrumentation
 - Description de la ligne d'irradiation
 - Evaluation des performances : méthodologie
- Evaluation des performances : résultats
- Aspects biologiques
 - Développements techniques
 - Recherche de protocoles
 - Premiers résultats

Schéma de principe

Objectif:

Calibrer la chaine d'instrumentation sur la dose moyenne reçue par les cellules

Méthode de calibration :

Détecteur PIPS (Passivated Implanted Planar Silicon)

- Détecteur semi-conducteur
- Réponse proportionnelle à l'énergie reçue => 1 impulsion = 1 proton

Contrôle en fluence de l'irradiation – schéma de principe

Contrôle de la délivrance de la dose (monitorage en ligne) :

[Fibres scintillantes – Fibres optiques – PM]

- Placées sur les bords de la fenêtre (dans le faisceau diffusé)
- Distantes de 1,35 cm de l'axe du faisceau
- Caractéristiques techniques : environ 800 photons collectés par impact d'ion

Schéma complet de la ligne d'irradiation Radiograaff

- Contexte scientifique du projet
- Aspects physique et instrumentation
 - Description de la ligne d'irradiation
 - Evaluation des performances : méthodologie
- Evaluation des performances : résultats
- Aspects biologiques
 - Développements techniques
 - Recherche de protocoles
 - Premiers résultats

Protocole de mesure en énergie

- Méthode de détection :
 - Mesure du nombre de protons par le détecteur PIPS
 - Polarisation = + 75 V => zone de déplétion maximale
 - Mise en forme des impulsion en sortie de l'amplificateur : 0,250 μs ; gain = 200
- Etalonnage du PIPS :
 - Source de ²⁴⁸Pu émettrice α
- Flux de protons :
 - 1000 p+/mm²/s => évite l'accumulation de charge dans le pré-amplificateur
- Enregistrement du spectre :
 - Logiciel MAESTRO (ORTEC, multichannel analyzer)

Protocole de dosimétrie

- Méthode :
 - Mesure de l'énergie du faisceau extrait => TEL_{eau} (SRIM)
 - Mesure de la fluence
- Dose :
 - $D = TEL_{eau} \times Fluence$

Calibration du système de mesure de la fluence

• Méthode de détection :

- Mesure du nombre de protons par le système [fibre scintillante fibre optique – PM] en fonction de la réponse absolue du détecteur PIPS, normalisé au précompte
- Caractéristiques des détecteurs :
 - Détecteur PIPS (Passivated Implanted Planar Silicon)
 - Collimaté (diamètre 1 mm)
 - Position fixe au centre de la fenêtre de Mylar (25 mm de diamètre)
 - Fibres scintillantes (monitorage en ligne)
 - Fibre #1 = 1mm
 - Fibre #2 = 0,3 mm (mauvaise connexion => HS)
 - Fibre #3 = 0,5 mm => pré-compte
 - Fibre #4 = 1 mm
- Configuration :
 - D1 [3600Å] + C2 [2mm] + D2 [1,99μm]

Protocole d'évaluation de l'homogénéité du faisceau

- Méthode de détection :
 - Mesure du nombre de protons par du détecteur PIPS (réponse absolue) normalisé au pré-compte (données brutes)
- Caractéristiques des détecteurs :
 - Détecteur PIPS (Passivated Implanted Planar Silicon)
 - Collimaté (diamètre 1 mm)
 - Balayage latéral par pas de 1 mm devant la fenêtre de Mylar (25 mm de diamètre)
 - Fibres scintillantes (monitorage en ligne)
 - Fibre 500 μm = pré-compte (100000)
- Configuration :
 - Courant = 21 nA (environ)
 - C1 [2mm] + D1 [3600Å] + C2 [2mm] + D2 [1,99μm]
 - 27500 p+/s (en moyenne) sur la surface du PIPS

- Contexte scientifique du projet et objectifs
- Aspects physique et instrumentation
- Evaluation des performances : résultats
- Aspects biologiques
 - Développements techniques
 - Recherche de protocoles
 - Premiers résultats

Spectre en énergie des protons extraits à l'air

Spectre en énergie mesuré dans l'air (détecteur PIPS étalonné) pour des protons dont l'énergie initiale $E_0 = 3,5$ MeV. On peut noter que le faisceau de protons extrait est très bien défini en énergie et ne contient pas de protons de basse énergie

	Energie des protons à l'air	FWHM
Expérience	$(2.864 \pm 0.008) \text{ MeV}$	$(58 \pm 4) \text{ keV}$
SRIM	$(2.902 \pm 0.084) { m MeV}$	$(58.8\pm5)~\mathrm{keV}$
GATE	$(2.923 \pm 0.083) \; MeV$	$(57.6 \pm 4) \text{ keV}$

Impact du débit de dose

Courbes de calibration du système de monitorage en ligne

• les erreurs statistiques sont de la taille des points,

 13300 coups/s dans le PIPS correspond à un débit de dose de 2 Gy/min pour des protons accélérés à 3,5 MeV

Conclusion :

Il est possible de travailler à faible débit de dose (< 1 Gy/min) et à débits de dose « conventionnels » utilisés en radiobiologie : [2-10] Gy/min (correspondant à [13300-66500] coups/s dans le PIPS) => réponse linéaire.

	Fibre#1	Fibre#2	Fibre#3	Fibre#4
			(ici pré-compte)	
Taille théorique	1 mm ²	0,3 mm ²	0,5 mm ²	1 mm ²
Taille effective	1 mm ²	HS	0,6 mm ²	0,7 mm ²

Dosimétrie relative : méthode « scan »

Observation:

- Estimation de l'inhomogénéité du faisceau
 - ⇒ 4% de diminution sur les bords pour une configuration 2Gy/min (expérience) et 6% pour la simulation GATE

Conclusion :

- Calibration sur dose moyenne : erreur ± 2%
 - => cahier des charges atteint
 - => excellent accord entre la simulation et l'expérience

Dosimétrie relative : méthode films Gafchromics

Nous avons irradié un film Gafchromic HD-810 avec 2,5.10⁶ protons/cm² (correspondant à 3 Gy) pour un flux de 8,5.10⁵ protons/cm²/s (ce qui correspond à 1 Gy/min) pour un contrôle rapide de l'homogénéité du faisceau :

Superposition de l'image d'un film Gafchromic (HD-810) irradié par des protons accélérés à 3,5 MeV pour une dose de 3 Gy avec un débit de dose de 1 Gy/min et du résultat du profil scanné en x

Conclusion :

Calibration sur dose moyenne : erreur ± 2%
 => en corrélation avec la mesure du PIPS

- Contexte scientifique du projet et objectifs
- Aspects physique et instrumentation
- Evaluation des performances : résultats
- Aspects biologiques
 - Développements techniques
 - Recherche de protocoles
 - Premiers résultats

- Contexte scientifique du projet et objectifs
- Aspects physique et instrumentation
- Evaluation des performances : résultats
- Aspects biologiques
 - Développements techniques
 - Recherche de protocoles
 - Premiers résultats

En bout de la ligne d'irradiation Radiograaff

Passeur d'échantillon « robotisé » (tables de translation (X, Y)) Enceinte thermostatée (37 °C, air, possibilité d'arrivée de gaz)

Laboratoire de radiobiologie

- Caractéristiques :
 - SAS
 - Climatisation
 - Traitement d'air : mise en régime de pression+ 15 Pa /pression atmosphérique avec taux d'air neuf de 1 à 6 vol/h et filtration.
- Equipement du laboratoire
 - poste de sécurité microbiologique PSM (hotte à flux laminaire évite la contamination des cellules lors de leur manipulation),
 - hotte chimique (manipulation de solvants),
 - incubateur (37°C, 5% CO2 pour la culture cellulaire en condition normale),
 - centrifugeuse (permet la séparation de produits (milieu, cellules, particules, etc.) en fonction de la densité),
 - microscope optique (observation les cellules, mais aussi, évolutif pour nous permettre de le coupler à un microscope AFM),
 - pompe à vide (aspiration du milieu de culture dans les puits de culture cellulaire par exemple),
 - bain Marie,
 - vortex (mélange des solutions, notamment les microtubes),
 - congélateur (-80°C),
 - réfrigérateur,
 - machine à glace,
 - compteur de cellules

- Contexte scientifique du projet et objectifs
- Aspects physique et instrumentation
- Evaluation des performances : résultats
- Aspects biologiques
 - Développements techniques
 - Recherche de protocoles
 - Premiers résultats

Préparation des supports de cultures

- Caractéristiques :
 - Support n°1
 - Prototype boite de culture plastique fermée de 2 cm de diamètre interne
 - Pas de collage
 - Type de support : mylar (0,5µm) tendu
 - Stérélisable par rayon X

Vue isométrique Echelle : 1:1

- Support n°2
 - Labteck 1 ou 2 chambres
 - Stérile

- Support n°3 à l'origine
 - Anneaux métalliques (inox) de 2,5 cm de diamètre interne et de 2 cm de hauteur (nettoyer à l'éthanol)
 - Collage (super glue) sur le bord
 - Type de support : mylar (0,5μm) tendu
 - Séchage d'une nuit

Préparation des supports de cultures

- Support n°4 en test
 - Plaque 24 puits
 - Diamètre de 15 mm et un volume de 37,5 cm³
 - Feuille mince (25 μm d'épaisseur) de chlorotrifluoroethylène (PTCFE, dérivé du Téflon, d = 2,09 g/cm³)
 - Perte en énergie = 492,5 keV (simulation SRIM)
 - Stérile
 - Film adhésif stérile à la place du couvercle
 => maintien du milieu de culture pendant irradiation

- Opérations particulières :
 - Stérilisation du support 3
 - Bain d'éthanol 70% pendant 1h
 - Séchage sous la hotte 30 min
 - Support 2 et 4 prêts à l'emploi
 - Coating des supports 1 et 3 pour SQ20B uniquement:
 - 300 µl de polylysine pendant 1h
 - Aspiration
 - Séchage pendant 1h sous la hotte

Protocole de la survie cellulaire des lignées SCC61 et

• Ensemencement des cellules 12-24h avant irradiation :

SQ20B

- 1. Lignée SCC61 (radiosensible) et SQ20B (radiorésistante)
- 2. Trypsination des cellules
- 3. Ensemencement monocouche de 5.10⁵ cellules par puits
- 4. Support n°2 = protocole Labtek (pour les irradiations protons)
- 5. Volume total de milieu par puits = 3 ml
- Le lendemain les cellules sont en phase exponentielle de croissance . Morphologie normale
- Transport des cellules à la Doua
- Irradiation : 1-5 Gy, débit de 2Gy/min, X et protons
- Protocole des irradiations protons (Radiograaff):
 - 1. sortir un support « Labtek » de l'incubateur juste avant irradiation,
 - 2. aspirer le milieu de culture (porter un masque, des gants et ne pas parler),
 - 3. irradier (37°C, 1 minute max),
 - 4. remettre du milieu de culture dans les compartiments (porter un masque, des gants et ne pas parler) et replacer dans l'incubateur.
- Protocole des irradiations X (LRCM, Lyon Sud):
 - support : « classique » => Flask de 25 cm²,
 - irradiateur : X-Rad320 de la marque PXI, énergie moyenne des photons = 250 kV,
 - irradiation par-dessus, dans un champ de 20x20 cm², à une distance de 50 cm

- Contexte scientifique du projet et objectifs
- Aspects physique et instrumentation
- Evaluation des performances : résultats
- Aspects biologiques
 - Développements techniques
 - Recherche de protocoles
 - Premiers résultats

Détermination de la survie clonogénique des lignées SCC61 et SQ20B

(déjà démontré par irradiation carbone au GANIL, (Maalouff et al., 2009))

Perspectives :

- Irradiation avec des plaques 24 puits
- Dose plus élevée pour les SQ20B

Conclusion & perspectives

- Cahier des charges : atteint ;
- Premières courbes de survie clonogénique des deux lignées cellulaires : EBR_{10%} = 1,3 SCC61 et EBR_{10%} = 1,4 SQ20B -> à confirmer ;
- Améliorations :
 - Mise en place d'un nouveau protocole avec les plaques 24 puits
 - Porte-échantillon adapté
- Aménagement du local de radiobiologie ;
- Préparation et organisation pour l'accueil des expériences avec la capacité de 2 expériences par mois ;
- Générateur X et source gamma de faible débit de dose ;
- En cours : études des cinétiques de réparation de ces deux lignées cellulaires (technique d'immunohistochimie + microscopie et cytométrie en flux).

Remerciements

IPNL

• Service accélérateur :

Clément Bernard, Yves Champolivier, Raphael Fillol et Christophe Peaucelle.

• Service mécanique :

Franck Mounier, Jean-Luc Montorio, Thierry Alliaume, Alain Benoit, Lionel Germani et Jean-Christophe Ianigro.

- Service électronique : Rodolphe Della Negra.
- Service maintenance et logistique :

Annick Blainville, Jean-Michel Solbes, Jean-Paul Narcisse dans le développement du laboratoire de radiobiologie

LRCM – Lyon Sud

Claire Rodriguez-Lafrasse, Gersende Alphonse, Priscillia Batiston-Montagne, Sylvain Ferrandon et Marion Gilormini.

CCQ – Grange Blanche

Yves Tourneur et Denis Ressnikoff

LPC – Clermont-Ferrand

Gérard Montarou et Frédéric Chandez

Sources de financements

ED de physique et d'astrophysique de Lyon, le PRRH, le GdrMI2B et le CNES

Détermination de la survie clonogénique des lignées SCC61 et SQ20B

- Ajustement des courbes par le modèle linéaire quadratique :
 - $S = exp(-\alpha D \beta D^2)$
- α et β : paramètres d'ajustement issus du modèle quadratique,
- PE : "plating efficiency", indique le pourcentage de cellules qui ont adhéré au support et qui sont capables de donner des colonies,
- SF2 : la fraction de cellules survivantes à une irradiation de 2 Gy,
- D10 est la dose à 10% de survie

Particules	Lignée céllulaire	PE	α (Gy ⁻¹)	$\beta(Gy^{-2})$	SF2	D10 (Gy)
Photons -	SCC61	0.139	0.360	0.093	0.336	3.4
	SQ20B	0.205	0.118	0.009	0.792	10.7
Protons -	SCC61	0.126	0.876	-	0.173	2.6
	SQ20B	0.189	0.302	-	0.547	7.6

Conclusion :

• EBR_{10%} = 1,3 SCC61 et EBR_{10%} = 1,4 SQ20B

