

Spéciation de l'uranium dans l'eau de mer et bioaccumulation dans l'éponge *A. cavernicola*

M. Maloubier, C. Moulin, M. Monfort, P. Moisy, P-L. Solari, O. P. Thomas, M.Y. Dechraoui Bottein, C. Den Auwer

Contexte

- Diverses sources de radionucléides : naturelle et anthropogénique
- Devenir des radionucléides (U, Th, Am, Np, Cs)
 dans le milieu marin en situation accidentelle ?
- Le milieu marin est complexe et peu étudié
- Eponge: modèle de biomarqueur cible à fort facteur d'accumulation

Maher, K., J.R. Bargar, and G.E. Brown, Inorganic Chemistry, 52, p. 3510-3532 (2013) Genta-Jouve, G., et al., Chemosphere, 89, p.340-349 (2012)

Contexte

- Peu de données
- Etude du degré d'oxydation VI via l'uranyle
- Possibilité d'utiliser deux techniques de spéciation

VI V IV III

Concentrations des RN dans l'eau de mer et méthodes spectroscopiques

 Difficultés analytiques et spectroscopiques à cause des très faibles concentrations dans l'eau de mer

Actinide	Concentration en Méditerrannée (M)		
²³² Th	< 3. 10 ⁻¹²		
²³⁸ U	1,4 à 1,6. 10 ⁻⁸		
^{239,240} Pu	1. 10 ⁻¹⁷		
²⁴¹ Am	5. 10⁻²⁰ à 1. 10⁻¹⁹		
¹³⁷ Cs	5,7. 10 ⁻¹⁸		

Techniques spectroscopiques	Limites de détection (spéciation)	
SLRT : Spectroscopie Laser Résolue en Temps	U (VI) 10 ⁻⁸ M Am(III) 10 ⁻⁶ M Eu(III) 10 ⁻⁸ M	
XAS : Spectroscopie d'absorption X	10 ⁻¹ à 10⁻⁵ M	

Utilisation d'échantillons semi-naturels (dopés) : 5.10-5 M et 10-5 M

Méthodologie

Spéciation théorique et expérimentale Accumulation et localisation dans les organismes

Mécanismes de transfert

Concentrations naturelles ($[^{238}U] = 10^{-8} M$)

Spéciation dans l'eau de mer [U] = 5.10⁻⁵ M et 10⁻⁵ M

> JCHESS EXAFS SLRT

STXM : Scanning Transmission X-ray Microscopy

SLRT: Spectroscopie Laser Résolue en Temps

EXAFS: Extended X-Ray Absorption Fine Structure

Spéciation dans l'eau de mer : spéciation théorique

La spéciation théorique prédit la présence de complexe ternaire :

- Ca₂UO₂(CO₃)₃ (majoritaire)
- $CaUO_2(CO_3)_3^{2-}$

Même complexes déjà trouvé dans des eaux : eaux de ruissèlement et des eaux minérales

Complexes non toxiques et non biodisponibles

Speciation of U(VI) in seepage waters of mine tailing pile studied by TRLIF. Bernhard et al. **Radiochimica Acta** 74, 87 (1996)
Uranium speciation in drinking water from drilled wells in Finland and its potential links to health effects. Prat O, Vercouter T, Ansobolo E et al. **Envi. Sci. Technol**. 43, 3941 (2009)

• JNR 2014

Spéciation dans l'eau de mer : SLRT

Species	Fluorescence wavelengths (nm)	FWMH ^a (nm)	Lifetime (µs)	Ref
$Ca_2UO_2(CO_3)_3$	465-484-504-526-555	13	0.043 ± 0.012	Bernhard
<i>u</i>	465-484-505-526	13	0.040 ± 0.003	Vercouter
u	465-485-505-526-551	13	0.050 ± 0.010	This work
UO_2^{2+}	470-488-509-534-559	13	2 ± 0.1	X
UO ₂ OH ⁺	480-497-519-544-570	16	80 ± 5	X
$UO_2(OH)_2$	488-508-534-558	21	15 ± 5	X
$UO_2(OH)_3^-$	482-499-519-543-567	24	0.8 ± 0.1	X
Complexing media	494-516-540-565	13	200 (phosphate)	Y
(phosphate - sulphate)	u .	13	35 (sulphate)	Z

- Temps de vie court : < 50 ns
- Présence dans l'eau de mer de Ca₂UO₂(CO₃)₃

Speciation of U(VI) in seepage waters of mine tailing pile studied by TRLIF. Bernhard et al. **Radiochimica Acta** 74, 87 (1996) Uranyl carbonate complex formation: validation of the Ca2UO2(CO3)3. Bernhard et al. **Radiochimica Acta** 74, 87 (2001) Uranium speciation in drinking water from drilled wells in Finland and its potential links to health effects. Prat O, Vercouter T, Ansobolo E et al. **Envi. Sci. Technol**. 43, 3941 (2009)

Spéciation dans l'eau de mer : EXAFS

2 U - O_{ax} à **1.80**(1) Å, σ^2 =0.001 Å² 5.8(5) U - O_{eq} à **2.43** (1) Å, σ^2 =0.01 Å² 2.9(3) U-C à **2.90**(1) Å, σ^2 =0.002 Å²

 $S_0^2 = 1.0$, $e_0 = -1.70$ eV, R-factor = 1.5%

Ligne MARS (SOLEIL), seuil L_{III}

Modèle : Liebigite Ca₂UO₂(CO₃)₃.11H₂O

2 U – O_{ax} à **1.79**(1) **Å**, σ^2 =0.002 Å² 6 U- O_{eq} à **2.44(1)** Å, σ^2 =0.008 Å² 3 U-C à **2.88(3)** Å, σ^2 =0.009 Å²

 $S_0^2 = 0.92$, $e_0 = 0.32$ eV, R-factor = 1.1%

Uranyl carbonate complex formation: validation of the Ca2UO2(CO3)3. Bernhard et al. **Radiochimica Acta** 74, 87 (2001) XAS identifies Ca-U-carbonate complexes at environmetal concentrations. Kelly et al. **Geochim. Cosmo**. 71, 821 (2007)

• JNR 2014

Spéciation dans l'eau de mer : EXAFS

- Diminution de la concentration
 - o De 5.10⁻⁵ M à 10⁻⁵ M
 - Spectres EXAFS sont similaires
 - A priori pas de différences de spéciation

Spéciation dans l'eau de mer : **EXAFS**

 $[Np(V)] = 5.10^{-5} M$

2 Np - O_{ax} à **1.84**(1) Å, σ^2 =0.0003 Å² 6.0(1) Np- O_{eq} à **2.54** (2) Å, σ^2 =0.0168 Å² 2.0(2) Np-C à **2.99**(7) Å, σ^2 =0.0026 Å²

$$S_0^2 = 1.0$$
, $e_0 = -2.15$ eV, R-factor = 1.2 %

Seuil L_{II} car présence de Br Incertitudes sur le nombre de carbonate

Méthode de contamination dans les éponges

Accumulation: exemple de Eu

 Tendance linéaire avec un taux d'accumulation d'environ 1 ppm/h

 \Rightarrow

Les éponges pourraient accumuler plus.

• 16/09/2014

Conclusions et perspectives

- Spéciation dans l'eau de mer : complexation avec carbonates Ca₂UO₂(CO₃)₃
 - Mesures SLRT à plus basses concentrations
 - Même comportement avec le Np : complexation avec carbonates

Accumulation :

- Vérification de l'accumulation dans les éponges : spectrométrie alpha
- Mesures ICP-MS à réaliser sur échantillons d'eau de mer pour obtenir la courbe d'accumulation

Localisation / Spéciation :

- STXM sur coupes d'éponges (ALS Berkeley)
- EXAFS sur pastille d'éponge (Soleil ligne MARS)

Remerciements

H. Michel J.P. Goudour

J.L. Teyssie F.R. Oberhaensli Y. Bottein

Financement: CNRS/ INC et CEA DAM

Merci pour votre attention

● JNR 2014