

Spéciation de l'uranium dans l'eau de mer et bioaccumulation dans l'éponge *A. cavernicola*

<u>M. Maloubier</u>, C. Moulin, M. Monfort, P. Moisy, P-L. Solari, O. P. Thomas, M.Y. Dechraoui Bottein, C. Den Auwer

Contexte

- Diverses sources de radionucléides : naturelle et anthropogénique
- Devenir des radionucléides (U, Th, Am, Np, Cs) dans le milieu marin en situation accidentelle ?
- Le milieu marin est complexe et peu étudié
- Eponge: modèle de biomarqueur cible à fort facteur d'accumulation

Maher, K., J.R. Bargar, and G.E. Brown, Inorganic Chemistry, 52, p. 3510-3532 (2013) Genta-Jouve, G., et al., Chemosphere, 89, p.340-349 (2012)

Contexte

VI V IV III

Concentrations des RN dans l'eau de mer et méthodes spectroscopiques

 Difficultés analytiques et spectroscopiques à cause des très faibles concentrations dans l'eau de mer

Actinide	Concentration en Méditerrannée (M)	Techniques spectroscopiques	Limites de détection (spéciation)
²³² Th	< 3. 10⁻¹²		U (VI) 10⁻⁸ M
²³⁸ U	1,4 à 1,6. 10⁻⁸	SLRT : Spectroscopie Laser	Am(III) 10 -6 M
^{239,240} Pu	1. 10⁻¹⁷	Résolue en Temps	Ец(III) 10 - ⁸ М
²⁴¹ Am	5. 10⁻²⁰ à 1.10⁻¹⁹		
¹³⁷ Cs	5,7. 10 ⁻¹⁸	XAS : Spectroscopie d'absorption X	10 ⁻¹ à 10⁻⁵ M

Utilisation d'échantillons semi-naturels (dopés) : 5.10⁻⁵ M et 10⁻⁵ M

Atwood, D.A., Radionuclides in the Environment, ed. Wiley. 2010

Méthodologie

Spéciation théorique et expérimentale Accumulation et localisation dans les organismes Mécanismes de transfert

Concentrations naturelles ($[^{238}U] = 10^{-8} M$)

 STXM : Scanning Transmission X-ray Microscopy SLRT : Spectroscopie Laser Résolue en Temps
JNR 2014 EXAFS : Extended X-Ray Absorption Fine Structure

Spéciation dans l'eau de mer : spéciation théorique

La spéciation théorique prédit la présence de complexe ternaire :

- Ca₂UO₂(CO₃)₃ (majoritaire)
- $CaUO_2(CO_3)_3^{2-}$

Même complexes déjà trouvé dans des eaux : eaux de ruissèlement et des eaux minérales

Complexes non toxiques et non biodisponibles

Speciation of U(VI) in seepage waters of mine tailing pile studied by TRLIF. Bernhard et al. **Radiochimica Acta** 74, 87 (1996) Uranium speciation in drinking water from drilled wells in Finland and its potential links to health effects. Prat O, Vercouter T, Ansobolo E et al. **Envi. Sci. Techno**l. 43, 3941 (2009)

Spéciation dans l'eau de mer : SLRT

5,8E+04 -	Sta	indard UO ₂ ²⁺	Species	Fluorescence wavelengths (nm)	FWMHª (nm)	Lifetime (µs)	Ref
	Eau	de mer dopée	$Ca_2UO_2(CO_3)_3$	465-484-504-526-555	13	0.043 ± 0.012	Bernhard
4,8E+04 -		$[0] = 5.10^{\circ} \text{IVI}$	"	465-484-505-526	13	0.040 ± 0.003	Vercouter
		- 3,5E+05	"	465-485-505-526-551	13	0.050 ± 0.010	This work
3,8E+04 ·		- 3,0E+05					
2,85+04 -		- 2,5E+05	UO2 ²⁺	470-488-509-534-559	13	2 ± 0.1	Х
	MARTIN MARTIN		UO ₂ OH ⁺	480-497-519-544-570	16	80 ± 5	Х
	/ "`\/ / " `\\	- 2,0E+05	$UO_2(OH)_2$	488-508-534-558	21	15 ± 5	Х
1,8E+04 -		- 1,5E+05	$UO_2(OH)_3^-$	482-499-519-543-567	24	0.8 ± 0.1	Х
	WM	1,0E+05	Complexing media	494-516-540-565	13	200 (phosphate)	Y
8,0E+03 -		5 555 575	(phosphate - sulphate)	"	13	35 (sulphate)	Z
	wavelength (nm)						

- Temps de vie court : < 50 ns
- Présence dans l'eau de mer de Ca₂UO₂(CO₃)₃

Speciation of U(VI) in seepage waters of mine tailing pile studied by TRLIF. Bernhard et al. **Radiochimica Acta** 74, 87 (1996) Uranyl carbonate complex formation : validation of the Ca2UO2(CO3)3. Bernhard et al. **Radiochimica Acta** 74, 87 (2001) Uranium speciation in drinking water from drilled wells in Finland and its potential links to health effects. Prat O, Vercouter T, Ansobolo E et al. **Envi. Sci. Techno**l. 43, 3941 (2009)

• JNR 2014

Spéciation dans l'eau de mer : EXAFS

Uranyl carbonate complex formation : validation of the Ca2UO2(CO3)3. Bernhard et al. **Radiochimica Acta** 74, 87 (2001) *XAS identifies Ca-U-carbonate complexes at environmetal concentrations.* Kelly et al. **Geochim. Cosmo.** 71, 821 (2007)

• JNR 2014

16/09/2014 • 8/14

Spéciation dans l'eau de mer : EXAFS

- Diminution de la concentration
 - o De 5.10⁻⁵ Mà 10⁻⁵ M
 - Spectres EXAFS sont similaires
 - A priori pas de différences de spéciation

Spéciation dans l'eau de mer : EXAFS

2 Np - O_{ax} à **1.84**(1) Å, σ²=0.0003 Å² 6.0(1) Np- O_{eq} à **2.54** (2) Å, σ²=0.0168 Å² 2.0(2) Np-C à **2.99**(7) Å, σ²=0.0026 Å²

 $S_0^2 = 1.0, e_0 = -2.15 \text{ eV}, \text{ R-factor} = 1.2 \%$

Seuil L_{II} car présence de Br Incertitudes sur le nombre de carbonate

 $[Np(V)] = 5.10^{-5} M$

• JNR 2014

16/09/2014 • 11/ 14

 Tendance linéaire avec un taux d'accumulation d'environ 1 ppm/h

Les éponges pourraient accumuler **plus**.

• 16/09/2014

Conclusions et perspectives

- Spéciation dans l'eau de mer : complexation avec carbonates Ca₂UO₂(CO₃)₃
 - Mesures SLRT à plus basses concentrations
 - Même comportement avec le Np : complexation avec carbonates

Accumulation :

- Vérification de l'accumulation dans les éponges : spectrométrie alpha
- Mesures ICP-MS à réaliser sur échantillons d'eau de mer pour obtenir la courbe d'accumulation

Localisation / Spéciation :

- STXM sur coupes d'éponges (ALS Berkeley)
- EXAFS sur pastille d'éponge (Soleil ligne MARS)

Remerciements

H. Michel J.P. Goudour

J.L. Teyssie F.R. Oberhaensli Y. Bottein

Financement : CNRS/ INC et CEA DAM

Merci pour votre attention