Réactivité des surfaces des phases minérales constituant l'argilite du Callovo-Oxfordien Méthode par échange isotopique

Calcite

T. Suzuki-Muresan, K. David, S. Ribet, C. Landesman, G. Montavon, A. Abdelouas, B. Grambow

SUBATECH, Unité Mixte de Recherche 6457, Ecole des Mines de Nantes, CNRS/IN2P3, Université de Nantes, 4 rue Alfred Kastler, BP 20722, 44307 Nantes cedex 03, France

Session 3 : Les radionucléides et la géosphère

Image ANDRA (1) E. Gaucher et al. (2004) Physics and Chemistry of the Earth, Parts A/B/C 29 (1): 55-77

Contexte

 \rightarrow Diffusion (transfert) et Rétention (argilite)

Approfondir la compréhension de ces processus →Impact sur les évaluations de sûreté

Image extraite de la thèse de JC Robinet (2008)

Formation argileuse du Callovo-Oxfordien

Carbonate:

 \rightarrow majoritairement sous forme calcite

→ capacité d'incorporation et de recristallisation

 \rightarrow intérêt pour limiter la migration RNs

Image extraite de la thèse de JC Robinet (2008)

Formation argileuse du Callovo-Oxfordien

Réactivité de surface: quartz, calcite, argilite et ses composants

1000 ans après fermeture du site

Conditions proches de l'équilibre argile/eau

Processus lents: dissolution/précipitation, adsorption, incorporation, recristallisation...

Objectifs

Étude de la réactivité des surfaces des phases minérales (quartz, calcite, argile, argilite) constituant l'argilite du Callovo-Oxfordien dans les conditions proches de l'équilibre par la méthode de l'échange isotopique

Etude sur la calcite

(2) Montes-Hernandez et al. (2007) Journal of Crystal Growth 308(1): 228-236
(3) Yu et al. (2004) Journal of Crystal Growth 261(4): 566-570

Calcite Nano & Micro

- Calcite ISTerre⁽²⁾ (calcite H)
 - $-(9.76 \pm 0.01) \text{ m}^2/\text{g}$
 - 2 granulométries
 - (89 ± 12) nm, 60%
 - (580 ± 81) nm, 40%
- Calcite Subatech⁽³⁾ (calcite S)
 - $-(0.38 \pm 0.07) \text{ m}^2/\text{g}$
 - Granulométrie: (4 ± 2) µm
- Calcite dans l'argilite
 - 2-3 m²/g

pas de polymorphisme

60

(4) Curti et al. (2005) Geochimica et Cosmochimica Acta 69:1721

Réactivité de surface de la calcite à l'interface solide/solution

Rapport isotopique naturel (IUPAC) dans la calcite en équilibre avec la solution

Tacce urs isotopiques : 45 Caradioactif (T_{1/2} = 163j) ⁽⁴⁾

⁴²Ca naturel (enrichissement) Ajout du traceur en solution rapport isotopique du traceur enrichi (EURISOTOP)

$$\underbrace{\overset{42}\text{Ca}}_{\overset{44}\text{Ca}} = 57.379$$

ICP-MS HR

ICP-MS-HR ELEMENT-XR Thermo Scientific

- Résolution en masse 4000 ($\Delta m = 0.01 \text{ u.m.a.}$)
- Sensibilité 120 000 cps/ppb, LD 0.11±0.09 ppb / (2.7±2.3)×10⁻⁹ mol/L
- Correction du blanc de 0.2-4%
- Rapports isotopiques ⁴²Ca/⁴⁴Ca des échantillons corrigés du blanc et du fractionnement de masse (de l'ordre de 2.4%/u.m.a) à l'aide de solutions standards (Ca/Na) ou solution échantillon sans traceur

(5) Handler et al. (2009) Environ. Sci. Technol. 43:1102–1107

Mélange isotopique (⁴²Ca/⁴⁴Ca) en solution

Pourcentage échangé

$$\% Ech = \frac{\left(\frac{42}{44}\right)_{m\acute{e}lange} - \left(\frac{42}{44}\right)_{initial}}{\left(\frac{42}{44}\right)_{100\%\acute{e}chang\acute{e}} - \left(\frac{42}{44}\right)_{initial}} \times 100$$

Quantité de calcium échangée entre solide/solution dépend du rapport m/V Réactivité dépend de la granulométrie

(6) Heberling et al. (2014) Applied Geochemistry 45(0):158-190(7) Vandenborre et al. (2010) Inorganic Chemistry 49 (19): 8736-8748

Facteur d'enrichissement

 $FE = \frac{\left(\frac{42}{44}\right)_{surface}}{\left(\frac{42}{44}\right)_{solution}}$

Facteur d'enrichissement basé sur 1 monocouche Dizaine de monocouche engagée dans le processus d'échange isotopique → Effet de surface et non de solide entier

Rapport isotopique de surface

m/V faible

- \rightarrow peu d'échange avec solution
- → rapport isotopique de surface ne tend pas vers rapport d'équilibre (100%)
- → confirmation d'une réaction de surface entre les monocouches et la solution
- → nouveau rapport isotopique de surface

m/V élevé

- \rightarrow échange important avec solution
- → rapport isotopique de surface tend vers le rapport d'équilibre (100%)

(8) Palandri et al. (2004) Tech. Report No. Open File report 2004-1068

Réactivité de la surface dans les conditions proches de l'équilibre: mécanisme

(5) Réactivité de surface

- Equilibre bulk/solution pas atteint durant l'expérience
- Nouveau rapport isotopique de surface

(1) **Dissolution**

- (2) Équilibre chimique calcite/solution
- (3) Équilibre monocouche/solution⁽⁸⁾
 - Instantanée
 - Forte réactivité 1^{ère} monocouche

(4) Équilibre bulk/solution⁽⁸⁾

- Lent
- Mécanisme de diffusion lente par échange entre 1^{ère} monocouche et les autres couches

Impact sur le stockage à long terme

Carbonate / calcite

- Capacité d'incorporation dans le solide de métaux lourds
- Intérêt pour le stockage des déchets: puits

Processus de recristallisation en 2 étapes

- -(1) rapide sur la 1ère monocouche, (2) lente sur les couches suivantes.
- Recristallisation partielle, contrairement à la barite (BaSO₄+Ra)
- Perspective: expériences au-delà de 100 jours
 - Approfondir la compréhension du processus de recristallisation en surface pour les prédictions à long terme
 - İmpact sur l'incorporation de RNs (⁷⁹Se, ⁴¹Ca)

Remerciements

- Subatech: K. Perrigaud, V. Baty, J. Vandenborre
- Ecole des Mines de Nantes: N. Jolly, S. Klein, C. Gorin, Y. Shi
- Groupement de Laboratoires Transfert 2
- Laboratoire ISTerre (Grenoble): L. Charlet et G. Montes-Hernandez
- **Projet Européen SKIN** (FP7/2007-2011, n° 269688)
- Groupement de Laboratoires VFA2
- GEMs (Nantes) : J.-P. Regoin
- Institut des Matériaux Jean Rouxel (Nantes): N. Stéphant

Méthodologie

Réactivité de surface de la calcite

25 g/L (H)

- À 25 g/L:
 - Surface disponible importante
 - Près de 80% de Ca échangé
 - Près de 10 monocouches échangées
- Échanges principalement entre la surface et la solution

(5) Curti et al. (2005) Geochimica et Cosmochimica Acta 69:1721

- Confirmation des données de la littérature
 - Curti et al. (2005) (5)
 - Heberling et al. (2014) (7)
- Nouveau rapport isotopique à l'équilibre entre la surface et la solution