

Migration du deutérium dans le graphite nucléaire Conséquences sur le comportement du tritium en réacteur UNGG et sur la décontamination des graphites irradiés

<u>M. Le Guillou</u>^{a,b}, N. Moncoffre^a, N. Toulhoat^{a,c}, Y. Pipon^{a,d}, N. Bérerd^{a,d}, H. Khodja^e

^a IPNL, CNRS/IN2P3 UMR 5822, UCBL, Université de Lyon – F-69622 VILLEURBANNE

^b Andra, DRD/CM – F-92298 CHÂTENAY-MALABRY

^c CEA/DEN, Centre de Saclay – F-91191 GIF-SUR-YVETTE

^d IUT Lyon 1, UCBL, Université de Lyon – F-69622 VILLEURBANNE

^e LEEL, CEA/DSM/IRAMIS/NIMBE, UMR 3299 SIS2M, Centre de Saclay – F-91191 GIF-SUR-YVETTE

XIV^{es} Journées Nationales de Radiochimie et de Chimie Nucléaire

IPN Orsay - 12 septembre 2014

1. Contexte de l'étude

- La filière Uranium Naturel-Graphite-Gaz (UNGG)
- Démantèlement et gestion des graphites irradiés
- Objectifs de l'étude
- 2. Procédure d'étude des effets thermiques sur le comportement du ²H dans le graphite nucléaire
- 3. Résultats expérimentaux
 - Etude sous atmosphère inerte
 - Etude sous gaz caloporteur UNGG
 - Etude en présence de vapeur d'eau

4. Principales conclusions

Procédure d'étude des effets thermiques

Résultats expérimentaux

La filière Uranium Naturel-Graphite-Gaz (UNGG)

La filière Uranium Naturel-Graphite-Gaz (UNGG)

Elément combustibleUModérateur neutroniqueGGaz caloporteur97

Uranium naturel métallique (0,72 $\%^{235}$ U) Graphite nucléaire 97,5 % CO₂ + 2,5 % CO + CH₄ / H₂ / O₂ / H₂O

Circuit secondaire (eau)

La filière Uranium Naturel-Graphite-Gaz (UNGG)

Elément combustible

Modérateur neutronique

Uranium naturel métallique (0,72 % ²³⁵U)

Graphite nucléaire

Gaz caloporteur

97,5 % CO_2 + 2,5 % CO + CH_4 / H_2 / O_2 / H_2O

Circuit secondaire (eau)

Mael Le Guillou - 12/09/2014

Réacteur SLA2

JNR 2014

Procédure d'étude des effets thermiques

La filière Uranium Naturel-Graphite-Gaz (UNGG)

Elément combustible Modérateur neutronique Gaz caloporteur Uranium naturel + Gaine Mg/Zr + Chemise en graphite **Empilement cylindrique** (h ~ 10 m – \emptyset ~ 15 m) Circulation verticale entre chemise et gaine

Démantèlement et gestion des graphites irradiés

Mise à l'Arrêt Définitif (MAD)

1994 (BUA1) :

ANDRA Agence nationale pour la gestion des déchets radioactifs

Niveau IIDécontamination des structuresDéconstruction des bâtiments (hors bâtiment réacteur)

Démantèlement et gestion des graphites irradiés

1994

Niveau IIDécontamination des structuresDéconstruction des bâtiments (hors bâtiment réacteur)

 Niveau III
 Démantèlement du bloc réacteur et des échangeurs thermiques

 ~ 23 000 t de graphites irradiés (déchets FA-VL)

Procédure d'étude des effets thermiques

Démantèlement et gestion des graphites irradiés

Période ${}^{3}\text{H} \sim 12 \text{ ans} \rightarrow \text{RN}$ non dimensionnant pour le stockage des graphites

Mais...

Démantèlement | Risque de dégazage lors de la découpe des empilements

Stockage |Risque de dégazage lors de la manutention des colisMarquage environnemental après fermeture des ouvrages

Décontamination | Réduction de la forte activité initiale en ³H (+ ¹⁴C, ³⁶Cl ...)

Procédure d'étude des effets thermiques

Démantèlement et gestion des graphites irradiés

Période ${}^{3}\text{H} \sim 12 \text{ ans} \rightarrow \text{RN}$ non dimensionnant pour le stockage des graphites

Mais...

Démantèlement | Risque de dégazage lors de la découpe des empilements

StockageRisque de dégazage lors de la manutention des colisMarquage environnemental après fermeture des ouvrages

Décontamination | Réduction de la forte activité initiale en ³H (+ ¹⁴C, ³⁶Cl ...)

Proposition d'un scénario de gestion d'ici 2015 Stockage direct à faible profondeur ? Tri des déchets (selon activité) avant stockage ? Décontamination ?

Objectifs de l'étude

Comprendre le comportement migratoire du tritium dans le graphite nucléaire

En réacteur UNGG | Comportement thermique du ³H sous gaz caloporteur Effets de la **corrosion radiolytique** (radiolyse du caloporteur) et de l'irradiation du graphite

Rôle de la structure du graphite (grains, liant, porosité, etc)

Teneur et localisation du ³H (inventaire)

Après MAD | Comportement thermique du ³H en présence de vapeur d'eau

Conséquences sur les opérations de démantèlement, de décontamination et de stockage

Procédure expérimentale d'étude des effets thermiques

Préparation des échantillons | Découpe (pavés ~ 0,2 cm³) | Polissage & dégazage

Procédure expérimentale d'étude des effets thermiques

Préparation des échantillons | Découpe (pavés ~ 0,2 cm³) | Polissage & dégazage

Implantation ionique en ²H | RT sous vide | **3 profondeurs** d'implantation

Simulation de la **présence de tritium** (profils gaussiens)

Procédure expérimentale d'étude des effets thermiques

Préparation des échantillons | Découpe (pavés ~ 0,2 cm³) | Polissage & dégazage

Implantation ionique en ²H | RT sous vide | **3 profondeurs** d'implantation

Traitements thermiques

Atmosphères **inertes** (Ar, He, vide secondaire) Atmosphères **oxydantes** (gaz caloporteur, gaz humide)

Procédure expérimentale d'étude des effets thermiques

Préparation des échantillons | Découpe (pavés ~ 0,2 cm³) | Polissage & dégazage

Implantation ionique en ²H | RT sous vide | **3 profondeurs** d'implantation

Traitements thermiques

Atmosphères **inertes** (Ar, He, vide secondaire) Atmosphères **oxydantes** (gaz caloporteur, gaz humide)

Analyse du ²H par réaction nucléaire ²H(³He,p)⁴He (NRA) Profilométrie en **macrofaisceau** | IPNL Cartographies par **microsonde** nucléaire | LEEL – CEA Saclay

Procédure expérimentale d'étude des effets thermiques

Préparation des échantillons | Découpe (pavés ~ 0,2 cm³) | Polissage & dégazage

Implantation ionique en ²H | RT sous vide | **3 profondeurs** d'implantation

Traitements thermiques

Atmosphères **inertes** (Ar, He, vide secondaire) Atmosphères **oxydantes** (gaz caloporteur, gaz humide)

Analyse du ²H par réaction nucléaire ²H(³He,p)⁴He (NRA) Profilométrie en macrofaisceau | IPNL Cartographies par microsonde nucléaire | LEEL – CEA Saclay

Caractérisations structurales | Microscopie optique | MEB | MET | Raman

Comportement thermique du ²H sous atmosphère inerte

Relâchement prédominant

+ Diffusion en direction de la surface

Comportement thermique du ²H sous atmosphère inerte

Comportement thermique du ²H sous atmosphère inerte

3 régimes de relâchement

Régime initial	< quelques min / h
Régime transitoire	< quelques h / dizaines d'heures
Régime de saturation	> quelques h / dizaines d'heures

Comportement thermique du ²H sous atmosphère inerte

Relâchement plus important à proximité de la surface

750 nm	Sa	itura	ation ~	90	%
1,7 µm	Sa	itura	ation ~	75	%
2.2	C		, •	<u> </u>	0 /

 $3,2 \ \mu m$ | Saturation ~ 60 %

Comportement thermique du ²H sous atmosphère inerte

3 chemins de migration

 Dépiégeage du ²H retenu à proximité des surfaces libres avec relâchement quasi instantané dans la porosité ouverte (3 eV)

Agence nationale pour la gestio

Comportement thermique du ²H sous atmosphère inerte

3 chemins de migration

 Dépiégeage du ²H retenu à proximité des surfaces libres avec relâchement quasi instantané dans la porosité ouverte (3 eV)

2 Dépiégeage du ²H retenu à la **surface des cristallites** et diffusion intragranulaire apparente (dissociations-recombinaisons -1,4 eV)

> 3 Dépiégeage du ²H retenu en **position interstitielle** et diffusions interplanaire + intragranulaire (1,4 eV)

Comportement thermique du ²H sous atmosphère inerte

Essentiel du ²H retenu dans les grains

 $1000 \ ^{\circ}C / \ 300 \ h$ | Grain ~ 5 % ²H retenu / « Points chauds » > 10 % Liant < 1 % ²H retenu

Comportement thermique du ²H sous caloporteur UNGG

Relâchements similaires sous atmosphère inerte et sous gaz caloporteur

Comportement thermique du ²H sous caloporteur UNGG

Relâchements similaires sous atmosphère inerte et sous gaz caloporteur

Extrapolation au ³HRelâchement thermique en réacteur < 10 % (~ h) / 30 % (11 ans EPP)</th>Essentiellement localisé à proximité des surfaces libresEffets de l'irradiation neutronique et de la corrosion radiolytique ?

Comportement thermique du ²H en présence de vapeur d'eau

Relâchements sous vapeur d'eau fortement dépendant de la température

< 500 °C (jusqu'à 12 h) | Aucun relâchement observé (idem atmosphère inerte) 800 °C (1 h) | Relâchement plus faible sous H_2O (liaisons C dues à l'oxydation ?)

Comportement thermique du ²H en présence de vapeur d'eau

Relâchements sous vapeur d'eau fortement dépendant de la température

< 500 °C (jusqu'à 12 h) | Aucun relâchement observé (idem atmosphère inerte) 800 °C (1 h) | Relâchement plus faible sous H₂O (liaisons C dues à l'oxydation ?) 800 °C (4 h) à 1000 °C (1 h) | Consommation de la zone implantée (gazéification de la surface)

Comportement thermique du ²H en présence de vapeur d'eau

Relâchements sous vapeur d'eau fortement dépendant de la température

< 500 °C (jusqu'à 12 h) | Aucun relâchement observé (idem atmosphère inerte) 800 °C (1 h) | Relâchement plus faible sous H₂O (liaisons C dues à l'oxydation ?) 800 °C (4 h) à 1000 °C (1 h) | Consommation de la zone implantée (gazéification de la surface)

Procédure d'étude des effets thermiques

Principales conclusions

*Migration du*²*H* | Relâchement > 500-600 °C / Total > 1200 °C

3 régimes de relâchement (dépendants de la température)

Relâchement préférentiel à proximité des surfaces libres et dans les zones de liant

Extrapolation au ^{3}H | Relâchement thermique en réacteur < 30 % en 11 ans EPP

Relâchement **moins important en présence de vapeur d'eau** (décontamination en ³H plus efficace sous atmosphère inerte)

Merci de votre attention !