

Scintillating bolometers of LMO in LNGS

Second general meeting of the ISOTTA project

Luca Pattavina

luca.pattavina@lngs.infn.it

24th June 2013, CSNSM-Orsay

Outline

- Bolometers & low background physics
- Scintillating bolometers of LMO tests with $\alpha_{\textrm{,}}$ $\beta/\gamma_{\textrm{,}}$ n
- Solar axions search
- Conclusions

The bolometric technique

fully-active detector

Almost all the deposited energy is converted into phonons which induce a measurable temperature rise

The heat capacity of the crystal must be very small (-> low Temperature ~10 mK)

<u>Absorber</u>

- M ~ 0.45 kg
- $C \sim 10^{-10} J/K$
- $\Delta T / \Delta E \sim 500 \mu K / MeV$

<u>Sensor</u>

- $-R = R_0 \exp[(T_0/T)^{1/2}]$
- R \sim 100 MQ
- $\Delta R/\Delta E \sim 3 M\Omega/MeV$

The underground facility

Laboratori Nazionali del Gran Sasso INFN, Italy

Neutrino physics Dark Matter physics Rare decays search

Hall C: UORE & LUCIPER

Experimental location:

- Average depth ~ 3650 m w.e.
- Muon flux ~ 2.6×10⁻⁸ $\mu/s/cm^2$
- Neutrons < 10 MeV: $4*10^{-6}$ n/s/cm²
- Gamma < 3 MeV: 0.73 $\gamma/s/cm^2$

CUORICINO experiment

Scintillating bolometers

When a **bolometer is an efficient scintillator** at low temperature, a small but significant fraction of the <u>deposited</u> <u>energy is converted into scintillation photons</u> while the remaining dominant part is detected through the heat channel.

The <u>simultaneous read-out</u> of **light** and **thermal** signals allows to discriminate the α background thanks to the scintillation yield different from β particles.

QF: is defined as the ratio of the signal amplitudes induced by an α and an β/γ of the same energy.

Li_2MOO_4

7

Candidate: ¹⁰⁰Mo

Good particle discrimination using Light vs. Heat

Li₂MoO₄ with γ -source Detected Light [keV ⁴⁰K source 680 69 Energy [keV] 1470 Energy [keV] Energy [keV] 0.6 keV 4 keV 1460 keV Ø 0.4 keV 0.2 -0.2 -0.4 1200 1400 600 800 1000 400 $\overline{2500}$ $\overline{0}$ 500 1000 1500 2000 1400 Energy [keV] Energy [keV] rgy [keV] nergy ~30% of ZnMoO₄ $LY_{\beta/\gamma} = 0.43 \text{ keV/MeV}$ ~7% of ZnSe $\sim 2\%$ of CdWO₄

Small crystal 22 x 33 mm => difficult calibration at 2615 keV

 Li_2MoO_4 with α -source

18 h calibration

Li₂MoO₄ with AmBe-source

O.P. Barinova et al., NIM A 607 (2009) 573

New limits:

Solar axions search

Detection of ^{7}Li solar axions by means of resonant absorption on analogue targets in the labs.

Conclusions

- Excellent candidate for DBD search of $^{100}\text{Mo:}$ => large QF_{\alpha} at high energy
- Good neutron detection in the frame of DM search (WIMPs)
- Good candidate for ⁷Li solar axions
- ... no large crystal (~100 g) has ever been produced ...
- Good intrinsic radio-purity level

High energy $\beta/\gamma s$ background

Background can be induced by contaminations of ^{238}U & ^{232}Th decay products. Elements with $Q_{value} \sim Q_{DBD}$:

Near contaminations (crystal or Cu structure): => rejection because of pile-up - ²¹⁴Bi-²¹⁴Po : Q_{value} 3.27 MeV with ²¹⁴Po and slow thermal signal => delayed coincidence with $^{214}Bi \alpha$ - ²¹⁰Tl-²¹⁰Po : Q_{value} 5.49 MeV => delayed coincidence with $^{212}Bi \alpha$ - ²⁰⁸Tl-²⁰⁸Pb : Q_{value} 5.00 MeV => proper shields & material Far contaminations (external) are dangerous selection 238U 232Th ^{212}Bi t = 60.6 m 214 Bi t = 19.9 m b+g 64% a 36% a .02% b+g 99.98% Q= 6207 keV Q= 2254 keV Q= 5617 keV O= 3272 keV 212 Po t = 299 ns 208 Tl t = 3.05 m ²¹⁰Tl t = 1.3 m 214 Po t = 0.163 ms b+g 100% a 100% a 100% b+g 100% Q= 5489 keV O= 7833 keV Q= 8954 keV Q= 5001 keV 210 Po t = 22.3 y ²⁰⁸ Po stable

α surface contaminations

M. Clemenza et al., Eur. Phys. J. C **71**, 1805 (2011)

Sensitivity for DBD0 ν

Sov: half-life corresponding to the minimum number of detectable signals above background at a given C.L.	ββ candidate:Te-130 Q_value: 2528 keV Material: TeO ₂ Natural a.i.: 34% Source Mass: 206 kgTe-130 Projected Bkg: 0.01 c/keV/kg/y Resolution: ~ 5 keV @ROI Sensitivity Tro: 1.6x1026 y in 5 y									
Sensitivity $T_{1/2}$: 1.6x10 ²⁴ y in 5 y <i>Edicated to al. arXiv:1109.0494</i> high natural i.a. among $0\nu\beta\beta$ candidates or enrichment a.i.: isotopic abundance $S_{0\nu} \propto a.i. \sqrt{\frac{M \cdot t}{B \cdot \Delta E}}$ B: background - Deep underground location - Material selection (radio-pure) M: detector mass $M: detector mass M: detector mass M: detectorM: detect$										

α surface contaminations

CUORICINO experiment

High energy β/γ s background

Background can be induced by contaminations of 238U & 232Th decay products. Elements with $Q_{value} \sim Q_{OBO}$:

Near contaminations (crystal or Cu structure):

-	²¹⁴ Bi- ²¹⁴ Po	:	Qualue	3.27	MeV	=> wit	rejectio h ²¹⁴ Po a	on because and slow t	of herr	pile nal s	n−up signal	1
-	²¹⁰ Tl= ²¹⁰ Po ²⁰⁸ Tl= ²⁰⁸ Pb	:	Qualue Qualue	5.49 5.00	MeV MeV	=> =>	delayed delayed	coinciden coinciden	ce i ce i	with with	²¹⁴ Bi ²¹² Bi	α

Far contaminations (external) are dangerous

