

Università degli Studi di Milano-Bicocca INFN – Milano-Bicocca



# An array of scintillating bolometers of $ZnMoO_4$ in LNGS

L. Gironi

Second general meeting of the ISOTTA project

Orsay, June 24, 2013

#### Introduction - May 2012

First measurement with a large mass  $ZnMoO_4$  crystal (330 g) at LNGS.

• Good bolometric performances.





Fig. 2. Calibration spectrum obtained by exposing the ZnMoO<sub>4</sub> crystal to the <sup>228</sup>Th source for 80 h. The peak at 2615 keV of <sup>208</sup>Tl, magnified in the inset, shows a FWHM resolution of 6.3 keV.

Table 2. FWHM energy resolutions of the  $ZnMoO_4$  detecto evaluated on the two thermistors and on their sum.

|          | ZnMoO4-1      | ZnMoO4-2      | ZnMoO4-Sum    |
|----------|---------------|---------------|---------------|
|          | [keV]         | [keV]         | [keV]         |
| 583 keV  | $4.1 \pm 0.7$ | 3.0±0.5       | $2.9 \pm 0.4$ |
| 911 keV  | $4.9 \pm 0.4$ | $4.7 \pm 0.5$ | $4.0 \pm 0.4$ |
| 1461 keV | $4.9 \pm 1.5$ | $5.4 \pm 1.2$ | $4.9 \pm 1.0$ |
| 2615 keV | $6.8 \pm 0.4$ | $6.6 \pm 0.6$ | 6.3±0.5       |

#### Introduction - May 2012

First measurement with a large mass  $ZnMoO_4$  crystal (330 g) at LNGS.

- Good bolometric performances.
- Excellent discrimination power  $(\alpha, \beta/\gamma)$ .



DP~19

2000

2500

1500



Orsay, June 24, 2013

500

LY [keV/MeV]

1.6 1.4 1.2

0.8 0.6

0.4

0.2

#### Introduction - May 2012

First measurement with a large mass  $ZnMoO_4$  crystal (330 g) at LNGS.

- Good bolometric performances.
- Excellent particle discrimination.
- Low internal contaminations.





| Chain              | nuclide           | activity             |
|--------------------|-------------------|----------------------|
|                    |                   | $\mu \mathrm{Bq/kg}$ |
| <sup>_232</sup> Th | <sup>232</sup> Th | < 8                  |
|                    | <sup>228</sup> Th | < 6                  |
| <sup>238</sup> U   | <sup>238</sup> U  | < 6                  |
|                    | <sup>234</sup> U  | < 11                 |
|                    | <sup>230</sup> Th | < 6                  |
|                    | <sup>226</sup> Ra | $27\pm6$             |
|                    | <sup>210</sup> Po | 700±30               |

Table 3. Evaluated internal radioactive contaminations. Limits are at 90% CL.

#### Orsay, June 24, 2013

'High' statistics measurement in very low background conditions (LNGS hall C cryostat, external + internal lead shield).



Statistics = 6.27 kg\*d

'High' statistics measurement in very low background conditions (LNGS hall C cryostat, external + internal lead shield).



Orsay, June 24, 2013

'High' statistics measurement in very low background conditions (LNGS hall C cryostat, external + internal lead shield).



Background reconstruction (preliminary test....)

Orsay, June 24, 2013

#### **Issue:**

How to normalize the simulations to measurement?

$$\chi^2 = \sum_{i}^{N_{\text{bins}}} \frac{(c_i - F_i(\boldsymbol{\theta}))^2}{\sigma_{c_i}^2 + \sigma_{F_i(\boldsymbol{\theta})}^2},$$

c = measurement $F(\theta) = sources of background$ 





Number of 2nDBD expected for  $T_{2nDBD} = 7.1 \cdot 10^{18}$ 

[0 - 3034 keV] = 625 counts $[1500 - 3034 \text{ keV}] = 151 \text{ counts} \longrightarrow \text{measured } 192 \text{ counts}$ 

Orsay, June 24, 2013

### The $ZnMoO_4$ array

In May 2013 a measurement with 3  $\rm ZnMoO_4$  crystals started. Goals of the measurement:

- Increase the statistic
- Reduce the (Compton) background thanks to the anti-coincidences
- Better recostruction of the background thanks to the coincidences analysis





• No light detector

Orsay, June 24, 2013





- $ZnMoO_4$  (1) = 328.8 g
- $ZnMoO_4$  (2) = 247.0 g
- $ZnMoO_4$  (3) = 235.2 g

### The $ZnMoO_4$ array

In May 2013 a measurement with 3  $\rm ZnMoO_4$  crystals started. The measurement is still ongoing.



## The $\rm ZnMoO_4$ array

In May 2013 a measurement with 3  $\rm ZnMoO_4$  crystals started. The measurement is still ongoing.



Orsay, June 24, 2013

Luca Gironi

Statistics = 13.54 kg\*d

### The $ZnMoO_4$ array

In May 2013 a measurement with 3  $\rm ZnMoO_4$  crystals started. The measurement is still ongoing.



Different thresholds. The new measurement will be reprocessed to lower the energy threshold.

Statistics = 13.54 kg\*d

#### Conclusions

- In May 2012 a first measurement with a large (330g)  $ZnMoO_4$  was performed
  - Good bolometric performances.
  - Excellent particle discrimination.
  - Low internal contaminations
- A low background measurement (6.27 kg\*d) performed in August September 2012
  - $\bullet$  Very low background in the energy region E>1460 keV
  - Low statistics -> very difficult recostruction of the background
- A new measurement with an array of  $3~{\rm ZnMoO_4}$  is ongoing in hall C of the LNGS
  - Goals of the measurements
    - Increase the statistics
    - $\bullet$  Reduce the (Compton) background thanks to the anti-coincidences
    - Better recostruction of the background thanks to the coincidences analysis