Status of the BiPo Detector

Héctor Gómez Maluenda

Laboratoire de l'Accélérateur Linéaire

gomez@lal.in2p3.fr

- Experimental setup
- Measurements:
 - Background measurement
 - Aluminum calibrations
 - Backing film (first SuperNEMO measurments)
- Outlook: Future measurements
- Summary and conclusions

BiPo DETECTION PRINCIPLE

- β – α delayed coincidence detection
 - Face to face scintillators
 - Measured sample between them
 - Each of the scintillators detect one particle
 - Pulse characteristics saved for analysis
 - Q, A, timing ...

EXPERIMENTAL SETUP

- BiPo is fully operative at Canfranc Underground Laboratory since January 2013
 - Two 1.8 m² each independent modules → 3.6 m² of sensitive surface
 - Possibility to measure up to 8 SuperNEMO source foils simultaneously
 - Twenty 30 x 30 cm² optical sub-modules per module
 - 2 mm thick polystyrene scintillator plates (200 nm aluminization)
 - Light guide geometry optimized for light collection
 - Detector volume separation and N₂ flushing for Rn suppression
 - 10 cm of Lead + 20 cm of Iron as external shielding

EXPERIMENTAL SETUP

- BiPo is fully operative at Canfranc Underground Laboratory since January 2013
 - Two 1.8 m² each independent modules → 3.6 m² of sensitive surface
 - Possibility to measure up to 8 SuperNEMO source foils simultaneously
 - Twenty 30 x 30 cm² optical sub-modules per module
 - 2 mm thick polystyrene scintillator plates (200 nm aluminization)
 - Light guide geometry optimized for light collection
 - Detector volume separation and N₂ flushing for Rn suppression
 - 10 cm of Lead + 20 cm of Iron as external shielding

MEASUREMENTS

- Module 1
 - Background Run with temporary shielding → July'12 October'12
 - Scintillators radiopurity
 - Al foil without LN₂ flushing neither shielding → December'12 January'13
 - Statistics for β/α discrimination development
 - Al foil with LN₂ flushing and full shielding → February'13
 - Calibration with future samples geometry
 - Backing Film measurement → Since March'13
- Module 2
 - Background Run without LN₂ flushing and temporary shielding → December'12 January'13
 - Statistics for β/α discrimination development
 - Background Run with LN₂ flushing and full shielding → February'13 May'13
 - Scintillators radiopurity
 - Al foil with LN₂ flushing and full shielding → Since June'13
 - Calibration with future samples geometry

MEASUREMENTS: Analysis reminder

Δt: ²¹²BiPo [20-1500] ns → ~ 5
$$T_{1/2}$$
(²¹²Po) ²¹⁴BiPo [10 -1000] μs → ~ 6 $T_{1/2}$ (²¹⁴Po)

$$E_{thr}(prompt) = E_{thr}(delay) = 160 \text{ keV}$$

Higher than the hardware thresholds calculated after calibrations

It could vary between measurements

$$Q/A_{cut} = \langle Q/A \rangle - 3\sigma$$

Reject scintillations events coming from light guide or photocatode and noises

- Module 1
 - 85 days of measurement (**230 d x m**² exposure)
 - 2 ²¹²BiPo events candidates with 30 % detection efficiency
 - 51 ²¹⁴BiPo candidates with 27 % detection efficiency → 6 "surface" events

- Module 1
 - 85 days of measurement (230 d x m² exposure)
 - 2 ²¹²BiPo events candidates with 30 % detection efficiency
 - 51 ²¹⁴BiPo candidates with 27 % detection efficiency → 6 "surface" events

- Module 2
 - 99 days of measurement (338 d x m² exposure)
 - 2 ²¹²BiPo events candidates with 30 % detection efficiency
 - 89 ²¹⁴BiPo candidates with 27 % detection efficiency → 4 "surface" events

Module 1

- 85 days of measurement (**230 d x m**² exposure)
- 2 ²¹²BiPo events candidates with 30 % detection efficiency
- 51 ²¹⁴BiPo candidates with 27 % detection efficiency → 6 "surface" events

Module 2

- 99 days of measurement (**338 d x m**² exposure)
- 2 ²¹²BiPo events candidates with 30 % detection efficiency
- 89 ²¹⁴BiPo candidates with 27 % detection efficiency → 4 "surface" events

Background level @ 90 % C.L. (μBq/m² scintillator)		
	Module 1	Module 2
²⁰⁸ TI	0.16 [0.04 – 0.50]	0.13 [0.04 – 0.37]
²¹⁴ Bi	1.28 [0.56 – 2.44]	0.28 [0.08 – 0.82]

10

- Expected sensitivity for the SuperNEMO source foils
 - Taking into account the geometry and density of these foils
 - From the background levels obtained in Module 1 (higher background level)

~ 0.13 bkg events expected per month

~ 1.5 bkg events expected per month

- 2 Al foils (85 and 170 μm respectively, wrapped with 4 μm polyethylene film) installed inside the Module 1
 - Calibrate the detector with a sample with the same geometry than the SuperNEMO source foils
 - Validate the simulations to estimate the detection efficiency of the samples
 - Have high statistics of BiPo events to develop and test the β/α discrimination algorithms

2

1

1 x 85 μ m Aluminium foil inside 4 μ m polyethylene film (for detectors protection)

20

2 x 85 μ m Aluminium foil inside 4 μ m polyethylene film (for detectors protection)

19

12

- 2 Al foils (85 and 170 μm respectively, wrapped with 4 μm polyethylene film) installed inside the Module 1
 - Calibrate the detector with a sample with the same geometry than the SuperNEMO source foils
 - Validate the simulations to estimate the detection efficiency of the samples
 - Have high statistics of BiPo events to develop and test the β/α discrimination algorithms

1 x 85 μm Aluminium foil inside 4 μm polyethylene film (for detectors protection)
 2 x 85 μm Aluminium foil inside 4 μm polyethylene film (for detectors protection)
 19

Preliminary results: 212BiPo events after 23 days of measurement

From BiPo: $A(^{212}BiPo) =$ $130 \pm 4(stat) \pm 28 (sys)$ mBq/kgFrom HPGe*:

 $A(^{212}BiPo) =$ $160 \pm 30 \text{ mBq/kg}$

* More precise measurement is ongoing

THEY SEEM IN GOOD AGREEMENT

Preliminary results: 214BiPo events after 23 days of measurement

More than 23000 candidates

- → Al events
- → Rnd Coincidences
- → Radon events

Preliminary results: 214BiPo events after 23 days of measurement

More than 23000 candidates

- → Al events
- → Rnd Coincidences
- → Radon events

16

Preliminary results: 214BiPo events after 23 days of measurement

More than 23000 candidates

- → Al events
- → Rnd Coincidences
- → Radon events

HIGH STATISTICS
AND
PHENOMENOLOGY
TO DEVELOP THE
β/α DISCRIMINATION

MEASUREMENTS: Backing Film

• First "real" measurement in BiPo since March'13:

Backing Film (~ 10 μm)

⁸²Se powder mixture (~ 100 μm)

2 samples prepared to measure in BiPo

8 layers of 300 x 30 mm² each (96 μ m)

Protected with 4 µm polyethylene film

OUTLOOK

- Measurements:
 - End of July:
 - Module 1

New Background Run after first measurement (and final configuration)

Module 2

PVA Glue for the Se mixture

Microbulk Micromegas (collaboration with Universidad de Zaragoza)

Aluminized mylar for the Calorimeter scintillators?

New measurements after summer

Depending on the available samples

- Analysis:
 - Development and application of the β/α discrimination algorithm

SUMMARY & CONCLUSIONS:

- BiPo is fully operative since January'13
 - 2 Modules → 3.6 m² of sensitive surface
- Background level of both detectors measured
 - Equivalent levels
 - Valid for the expected sensitivity
- First SuperNEMO measurements already started
 - Backing Film for the source foils
 - Some points of the analysis under study
- Measurement plan for next months almost fixed

Status of the BiPo Detector

Héctor Gómez Maluenda

Laboratoire de l'Accélérateur Linéaire

gomez@lal.in2p3.fr

- Experimental setup
- Measurements:
 - Background measurement
 - Aluminum calibrations
 - Backing film (first SuperNEMO measurments)
- Outlook: Future measurements
- Summary and conclusions

BACKUP:

β/α discrmination

$$\chi = rac{Q_{Delay}}{Q_{Total}}
ightarrow \chi_{lpha} > \chi_{eta}$$

Try to find the integration windows that optimize the difference

Compatible with the digitization windows

Expected:

- >80% rejection of β events
- >90% acceptance of α events

