ISOTTA ISOTope Trace Analysis

Advanced Techniques for the Production, Purification and Radio-Purity Analysis of Isotopically Enriched Sources for Double Beta Decay

Project coordinator CNRS

Andrea Giuliani - Centre National de la Recherche Scientifique, CSNSM, Orsay, France

Co-applicants CNRS (France) INFN (Italy) NCBiR (Poland)

Mathieu Bongrand – Centre National de la Recherche Scientifique, LAL, Orsay, France Oliviero Cremonesi – Istituto Nazionale di Fisica Nucleare, Sez. di Milano-Bicocca, Italia Ioan Dafinei – Istituto Nazionale di Fisica Nucleare, Sez. di Roma1, Italia Fernando Ferroni – Università la Sapienza, Roma, Italia Xavier Garrido - Université Paris-Sud 11, LAL, Orsay, France Jan Kisiel – University of Silesia, Katowice, Poland Jerzy Wojciech Mietelski - H. Niewodniczanski Institute of Nuclear Physics, Krakow, Poland Fabrice Piquemal - Centre National de la Recherche Scientifique, CENBG, Bordeaux, France Stefano Pirro – Istituto Nazionale di Fisica Nucleare, Sezione di Milano-Bicocca, Italia Ezio Previtali – Istituto Nazionale di Fisica Nucleare, Sezione di Milano-Bicocca, Italia Xavier Sarazin - Centre National de la Recherche Scientifique, LAL, Orsay, France Laurent Simard – Université Paris-Sud 11, LAL, Orsay, France Jacek Szabelski – Andrzej Sołtan Institute for Nuclear Studies, Łodz, Poland Marcin Wojcik – Institute of Physics, Jagiellonian University, Krakow, Poland Agnieszka Zalewska – H. Niewodniczanski Institute of Nuclear Physics, Krakow, Poland

Associated partners Ukraine Russia Germany

Kai Zuber – Technische Universität Dresden, Germany Fedor Danevich – Institute for Nuclear Research, Kyiv, Ukraine Roman. S. Boiko – Institute for Nuclear Research, Kyiv, Ukraine Ruslan Podviyanuk – Institute for Nuclear Research, Kyiv, Ukraine Vladimir Tretyak – Institute for Nuclear Research, Kyiv, Ukraine Victor Brudanin – Joint Institute for Nuclear Research, Dubna, Russia Dmitry Filosofov – Joint Institute for Nuclear Research, Dubna, Russia Oleg I.Kochetov – Joint Institute for Nuclear Research, Dubna, Russia Evgeny Yakushev – Joint Institute for Nuclear Research, Dubna, Russia

ISOTTA in a nutshell

Guidelines for the procurement of 1 ton of radiopure isotope for 0v-DBD within 3 years from the start

ISOTTA aims at:

- > reviewing the existing isotope producers
- investigating new enrichment technologies
- identifying purification procedures
- A developing techniques able to test the radiopurity of enriched samples at the level of few μBq/kg prefiguring final detectors

coordinated approach to the isotope problem, joining synergically the expertizes of the main European actors in the field

Necessity of enrichment at 1-ton scale

Evaluation of the **expected signal rate** for several interesting isotopes (**counts /(5 y ton**) for three different nuclear calculations, **assuming**:

Candidate	pnQRPA	IBM-2	ISM
⁷⁶ Ge	4.0	7.9	1.7
¹³⁶ Xe	4.8	12	3.9
¹³⁰ Te	9.4	17	5.6
¹¹⁶ Cd	12	/	/
⁸² Se	7.3	21	6.9
¹⁰⁰ Mo	10	19	/
¹⁵⁰ Nd	/	24	/

$$\langle M_{\beta\beta} \rangle = 20 \text{ meV}$$

(approximately, lower bound of the inverted hierarchy region)

Just to have enough signal ultrapure isotopically enriched material at the level of 1 ton is necessary

ISOTTA objectives

Main objective

create the conditions for the safe procurement (in terms of the **radio-purity** of the final source) of a large amount (at the 100 kg – 1 ton scale) of **isotopically enriched material** for the performance of a next generation 0v-DBD experiment.

achieved through the following intermediate goals:

- > Overview of the **isotope producers**
- > Overview of possible innovative technologies for the isotope production
- > Procurement of **samples of isotopically enriched materials**
- > Development of techniques and facilities for the **isotope radiopurity characterization** with
 - standard methods (nuclear and mass spectroscopy)
 - innovative methods, prefiguring the structure of future 0v-DBD experiments: enriched materials already cast in the form of the sources foreseen for the future detectors (bolometric absorbers, thin foils, scintillators and semiconductors)
- development of purification methods by using combination of chemical (recrystallization) and physical (vacuum distillation, filtration, zone melting) approaches

ISOTTA strategy (1)

1 Focus the attention on several very interesting candidates ⁸²Se - ¹⁰⁰Mo - ¹¹⁶Cd - ¹³⁰Te - ¹⁰⁶Cd - (unlikely, ¹⁵⁰Nd)

Q-value higher than 2615 keV (out of the bulk of gamma radioactivity)

Can be studied with:

- **Bolometric technique** (high energy resolution \approx 3-5 keV FWHM)
- External source (tracko-calo) approach (full event reconstruction)

Only relevant $\beta^+\beta^+$ candidate

2 Procure samples of isotopes in the ISOTTA consortium

- European Bank of Isotopes established inside ILIAS-FP6
- Samples belonging to
 - the associated partner Dubna
 - the associated partner Kiev
 - the CUORE collaboration
 - the LUCIFER collaboration

ISOTTA strategy (2)

③ Acquire small **samples of isotopes** with **ISOTTA** funding

④ Develop and coordinate trace analysis techniques

"self-counting" approach	 pre-screening investigation (ICP-MS, gamma/beta spectrometers) final investigation BiPo detectors Calorimetric detectors (scintillators – charge-collection devices) (Scintillating) bolometers
Sensitivity at	the level of a few μBq/kg for the isotopes under study

(5) Develop and coordinate **purification techniques**

Sensitivities of the advanced techniques proposed in ISOTTA

The techniques adopted in *ISOTTA* can provide **unprecedented** sensitivities at the level of

a few $\mu Bq/kg$

for several DBD candidates and for the most dangerous isotopes

²³⁸U, ²³²Th and their daughters

- Specifically, ²⁰⁸TI and ²¹⁴Bi
- Cosmogenic nuclide contribution (directly appreciable with the "self counting" approach)

level required by DBD experiment aiming at attacking the **inverted hierarchy region**

The structure of ISOTTA

5 work-packages

- WP1: Management and Coordination [Andrea Giuliani, CNRS]
- WP2: Isotope production and purification [Ezio Previtali, INFN]
- WP3: Isotope radio-purity assessment with nuclear and mass spectroscopy [Marcin Wojcik, IF UJ]
- WP4: Isotope radio-purity assessment with external source approach [Laurent Simard, CNRS]
- WP5: Isotope radio-purity assessment with calorimetric methods [Stefano Pirro, INFN]

Added value of transnational collaboration

Distributed laboratory with a few µBq/kg sensitivity

Budget

Institution	Requested	Assigned
CNRS	164000	164000 (?)
INFN	130000	54000
NCBiR	268700	~160000 (ask A.Z.)

Milestones and deliverables (WP1, WP2)

		Description of Deliverable / Milestone	Month
	M1.1	Set up of the Measurement Coordinating Panel	2
	D1.1	Organization of the general meeting and related documentation	4 10 16 ,22,28,34
	D1.2	Website	6
	D1.3	Annual reports (within inter-comparison among isotopes and technologies)	12,24,36
	M2.1	Overview of the isotopes available inside the consortium	2
	M2.2	Identification of the isotope producers to be contacted	4
	D2.1	Report with overview of the producers and identification of the plants	6
1	D2.2	Preparation of a sequence of small enriched samples	1022
	D2.3	Comparison between different enrichment techniques	1224
	D2.4	Report on the chemical and physical characteristics of the prepared samples	30
	M2.3	Selection of the most reliable isotope producers	32
	D2.5	Identification of purification procedures for the enriched materials	34
	D2.6	Preparation of a standard production protocol for isotope enrichments	36

Table 2 - Time plan of ISOTTA

Month	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
WP1	M1	D1	D2		D1	D3		D1			D1	D3		D1			D1	D3
WP2	M1	M2	D1		D2	D3					D 2	D3			D4	M3	D 5	D6
WP3					D1	D2 D3 D4	M1				D1	D4 D5			M2		D1	D6
WP4	M1				D1		D 2		D3	M2							D4	
WP5		M1			D1	D2			D3			D1		D2		D3	M2	

WP 1

WP 2

Milestones and deliverables (WP3, WP4, WP5)

	Description of Deliverable / Milestone	Month
D3.1	Report on the screening campaign of the enriched samples and sources	10,22,34
D3.2	Report on the MC results on expected performance of different $lpha$ spectrometers	12
M3.1	Selection of the technology for a new large surface $lpha$ spectrometer	14
D3.3	Design study of a new Ge spectrometer with different shielding options	12
D3.4	Report on simulations of background for the $lpha$ and γ spectrometers at SUNLAB	1224
D3.5	Working prototypes of $lpha$ and γ spectrometer and related report	24
M3.2	$lpha$ and γ spectrometers ready for measurements	30
D3.6	Report on performance of α and γ spectrometer and related measurements	36
M4.1	BiPo-3 detector available	2
D4.1	Report on the background of the BiPo-3 detector	10
D4.2	Technical report on the performance of the BiPo-3 detector	10 14 18
D4.3	Report on the internal radioactivity of the ⁸² Se source	18
M4.2	Validation of the ⁸² Se source	20
D4.4	Report on all the measurements made with the BiPo-1 and BiPo-3	34
M5.1	Aboveground set-ups ready for characterization of calorimetric detectors	4
D5.1	Technical report on the performance of the calorimetric detectors	10 24
D5.2	Report on the internal radioactivity of natural crystalline samples	12 28
D5.3	Report on the internal radioactivity of enriched crystalline samples	18 32
M5.2	Ranking of isotopes for a future large calorimetriq 0v-DBD experiment	34

Month	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36
WP1	M1	D1	D2		D1	D3		D1			D1	D3		D1			D1	D3
WP2	M1	M2	D1		D2	D3					D2	D3			D4	M3	D 5	D6
WP3					D1	D2 D3 D4	M1				D1	D4 D5			M2		D1	D6
WP4	M1				D1		D 2		D3	M2							D4	
WP5		M1			D1	D2			D 3			D1		D2		D 3	M2	

WP 3

WP 4

WP 5