

European Research Council

Scintillating bolometers of ZnSe in LNGS

Second general meeting of the ISOTTA project

Luca Pattavina

luca.pattavina@lngs.infn.it

24th June 2013, CSNSM-Orsay

Outline

- Why ZnSe
- Background source in bolometers
- Scintillating bolometers of ZnSe
 - LY
 - particle discrimination
 - internal contaminations
- Conclusions

Sensitivity for DBD0 ν

Sov: half-life corresponding to the minimum number of detectable signals above background at a given C.L.	ββ candidate:Te-130 Q value: 2528 keV Material: TeO ₂ Natural a.i.: 34% Source Mass: 206 kgTe-130 Projected Bkg: 0.01 c/keV/kg/y Resolution: ~ 5 keV @ROI					
high natural i.a. among Ονββ	Sensitivity T _{1/2} : 1.6x10 ²⁶ y in 5 y Edimentics et al. arXiv:109.0494 (Stable over long time (~v))					
alundance Arige mass array (class close coor long class ()) M: detector mass time t: measuring time						
$S_{0 u} \propto a.i.\sqrt{rac{1}{B}}$	$\frac{M \cdot t}{\Delta E}$					
B: background Deep underground location Material selection (radio-pure) High granularity	ΔE: energy resolution Bolometric approach					

α surface contaminations

CUORICINO experiment

High energy β/γ s background

Background can be induced by contaminations of 238U & 232Th decay products. Elements with $Q_{value} \sim Q_{OBO}$:

Near contaminations (crystal or Cu structure):

	-	²¹⁴ Bi- ²¹⁴ Po	:	Qualue	3.27	MeV	=> wit	rejection because of pile-up th ²¹⁴ Po and slow thermal signal	
	-	²¹⁰ Tl- ²¹⁰ Po ²⁰⁸ Tl- ²⁰⁸ Pb	:	Qualue Qualue	5.49 5.00	MeV MeV	=>	delayed coincidence with ²¹⁴ Bi o delayed coincidence with ²¹² Bi o	x
Far	cor	tamination	18	(exte	rnal)	are	dangerous	=> proper shields & material selection	L

Scintillating bolometers

When a **bolometer is an efficient scintillator** at low temperature, a small but significant fraction of the <u>deposited</u> <u>energy is converted into scintillation photons</u> while the remaining dominant part is detected through the heat channel.

The <u>simultaneous read-out</u> of **light** and **thermal** signals allows to discriminate the α background thanks to the scintillation yield different from β particles.

QF: is defined as the ratio of the signal amplitudes induced by an α and an β/γ of the same energy.

ZnSe

Candidate: ⁸²Se

ZnSe background

J W Beeman et al 2013 JINST 8 P05021

Energy [keVee]

ZnSe background

ZnSe nuclear recoils discrimination

- 210 Po nuclear recoils energy is shifted by ~35% (they are expected @ 103 keV)

- $^{210}\mathrm{Po}$ nuclear recoils produce a light signal < 14 eV

- $LY_{nr} < 0.140 \text{ keV/MeV}$
- Energy threshold @ 70 keV_{ee} (~50 keV_{nr})

To be sensitive to WIMP nuclear recoils thresholds < 30 keV_{ee} (10 keV_{nr}) are needed as well as LDs with baseline energy resolution < 20 eV for the discrimination β/γ - NR

a lot of work has still to be done...

Conclusions

- * ZnSe scintillating bolometers allow an excellent particle discrimination (Heat vs. Light, Heat, Light)
- * In ZnSe compound the amount of useful material is 55% (higher than most of "interesting compound")
- * Problems concerning crystal growth are under investigation
- * Dark Matter search with ZnSe is not so far...

