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Axions, a short reminder Martin Elmer
Bose Einstein condensation of Dark Matter Axions?

Strong CP problem
Review on axions: Raffelt, Stars as Laboratories for Fundamental Physics

• QCD contains CP violating term

LΘ = Θ
αs

8π
GG̃

• induces neutron electric dipole moment ⇒ not observed

|Θ| < 10−10

strong CP problem
Peccei Quinn solution:
make Θ dynamical variable with potential min at 0
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Axions, a short reminder Martin Elmer
Bose Einstein condensation of Dark Matter Axions?

Peccei - Quinn Mechanism Peccei Quinn, Phys. Rev. D. 16 (1977)

• new U(1)PQ symmetry spontaneously broken at scale
fPQ

• axion a(x) = Gloldstone boson, "phase" of new
complex scalar field

• gluon coupling by construction ⇒ LΘ → a(x)
fPQ

αs
8πGG̃

• mixing with pions ⇒ mass mafPQ ∼ mπfπ (after QCD phase transition)

• axion potential with minimum at a = 0

• CP conservation
fPQ is the determining parameter!

(up to O(1) model dependent factors)

4 of 13



Axions, a short reminder Martin Elmer
Bose Einstein condensation of Dark Matter Axions?

Peccei - Quinn Mechanism Peccei Quinn, Phys. Rev. D. 16 (1977)

• new U(1)PQ symmetry spontaneously broken at scale
fPQ

• axion a(x) = Gloldstone boson, "phase" of new
complex scalar field

• gluon coupling by construction ⇒ LΘ → a(x)
fPQ

αs
8πGG̃

• mixing with pions ⇒ mass mafPQ ∼ mπfπ (after QCD phase transition)

• axion potential with minimum at a = 0

• CP conservation

fPQ is the determining parameter!

(up to O(1) model dependent factors)

4 of 13



Axions, a short reminder Martin Elmer
Bose Einstein condensation of Dark Matter Axions?

Peccei - Quinn Mechanism Peccei Quinn, Phys. Rev. D. 16 (1977)

• new U(1)PQ symmetry spontaneously broken at scale
fPQ

• axion a(x) = Gloldstone boson, "phase" of new
complex scalar field

• gluon coupling by construction ⇒ LΘ → a(x)
fPQ

αs
8πGG̃

• mixing with pions ⇒ mass mafPQ ∼ mπfπ (after QCD phase transition)

• axion potential with minimum at a = 0

• CP conservation
fPQ is the determining parameter!

(up to O(1) model dependent factors)

4 of 13



Axions, a short reminder Martin Elmer
Bose Einstein condensation of Dark Matter Axions?

Axion cosmology
Misalignment mechanism Dine and Fischler, Phys Lett. B 120

• for T ∼ fPQ :
◦ U(1)PQ spontaneously broken
◦ axion field sits fixed at ainit = θinit fPQ

• after QCDPT (T ∼ 100Mev)
◦ axion potential tilted ⇒ axion mass
◦ axion field oscillates (classical field oscillations)
◦ ⇒ cold dark matter

• Assuming inflation before PQ symmetry breaking

Ωah2 ∼ 0, 4
(

10µeV
ma

)7/6

• good DM candidate: ma & 10µeV

G.

Raffelt @ (BLV2013)

Cosmic string decays
Cold dark matter, ongoing discussion, Hiramatsu et al. arXiv:1202.5851, Sikivie

astro-ph/0610440
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Axions, a short reminder Martin Elmer
Bose Einstein condensation of Dark Matter Axions?

Astrophysics and laboratory searches G. Raffelt @ (BLV2013)
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Sikivie’s idea Martin Elmer
Bose Einstein condensation of Dark Matter Axions?

Sikivie et al’s idea arXiv:0901.1106

Do axions behave differently than WIMPS?
(except for successful direct detection )

• If axions are in a Bose-Einstein condensate they develop a different
galactic halo structure than WIMPs. (Caustics)

• BEC formation needs dissipation
• self-interaction λa4 is not enough
• gravitational interaction (Saikawa, Yamaguchi et al, arXiv:1210.7080, arXiv:1310.0167)

Do gravitational interactions thermalize cosmic axions?
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Gravitational thermalisation? Martin Elmer
Where to start Bose Einstein condensation of Dark Matter Axions?

Our starting point

S.Davidson and M.E. arXiv:1307.8024

• Axions are born as classical field oscillations ⇒ classical problem
• What we already know about gravity:

◦ expands the universe

◦ grows density fluctuations

}
leading order solutions to GR

• Do not contain dissipation
• Fast interaction rate is not enough for BEC formation!
• Dissipative effects must be sub leading

How to divide gravity into deterministic and dissipative part?
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Gravitational thermalisation? Martin Elmer
Axion viscosity estimate Bose Einstein condensation of Dark Matter Axions?

Our trick

Observations:
• off diagonal terms of Tµν not used for leading order solutions
• imperfect fluid has viscosity on its off diagonal
• viscosity damps density fluctuations on short length scales ⇒
homogenisation, BEC formation?

Idea: Estimate axion viscosity by comparing Tij

axion scalar field ⇔ imperfect fluid

perturbed metric ↗ ↖ homogeneous metric
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Gravitational thermalisation? Martin Elmer
Axion viscosity estimate Bose Einstein condensation of Dark Matter Axions?

Viscosity estimate

scalar field:
T i

j (~x , t) = −1 + 2φ
R2(t)

∂ia∂ja

imperfect fluid:

T i
j (~x , t) = −η(t)(∂jU i (~x , t) + ∂ iUj(~x , t))

η = viscosity, Uµ= fluid velocity, φ= Newtonian potential

⇒ estimate viscosity

η(t)

na(t)
∼ 2πG

∑
p

δρ̃(p, t)R2(t)

|~p|2

Source of gravitational interactions δρ̃(p, t) can be dominated by
axions or photons!
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Gravitational thermalisation? Martin Elmer
Result Bose Einstein condensation of Dark Matter Axions?

Viscosity impact

Decay rate for perturbation (comoving size 1/|~p|) due to viscosity
dumping

Γg ∼
η(t)|~p|2

R2(t)ρ(t)
∼ Gm2

ana(t)

H2
QCD

p2

m2
a

R(t)

Req

Comparing Γg ∼ H gives damping scale: `2damp(t = 1/H)
Results:
• Damping scale is always smaller than the Jeans length!!
• no effects on cosmological length scales
• No thermalisation on horizon scales found!

11 of 13



Gravitational thermalisation? Martin Elmer
Result Bose Einstein condensation of Dark Matter Axions?

Picture of gravitational thermalisation

• Leading order solutions of GR:
◦ Homogeneous part of axion energy density drives expansion
◦ Density perturbations grow at leading order

• Dissipation cannot be obtained from time-reversal invariant
classical field equations at leading order

• Dissipative effects of gravity must be suppressed
• estimation of axion viscosity gives negligible effects on cosmological
scales

• No claim that our estimate is leading order dissipative process
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Summary Martin Elmer
Bose Einstein condensation of Dark Matter Axions?

Summary

• axions are very interesting CDM candidates, soon news from ADMX
Do axions behave differently from WIMPS?

• Sikivie’s idea: difference when axions form a BEC
• BEC formation needs dissipation
• Is thermalisation provided by gravitational interaction?
• Our thermalisation estimate
◦ leading order gravitational effects do not contain dissipation
◦ look for sub-leading effects
◦ trick: estimate axion viscosity ⇒ dumping of fluctuations on negligible

small scales

• We cannot confirm gravitational axion thermalisation!
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Summary Martin Elmer
Bose Einstein condensation of Dark Matter Axions?

Backup
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Summary Martin Elmer
Bose Einstein condensation of Dark Matter Axions?

Linear perturbation theory

Dynamics determined by
• Einstein equations Gµν = 8πGTµν
• Energy momentum conservation Tµν

;ν = 0

Metric

in Newtonian gauge

ds2 = (1 + 2ψ)dt2 − R2(t)(1− 2φ)δijdx idx j

Stress energy tensor

• scalar field Tµ
ν = ∂µa∂νa − 1

2(∂αa∂αa −m2a2)δµν
• in a homogeneous and isotropic Universe Tµν = diag(ρ̄, P̄, P̄, P̄)

• adding scalar perturbations:

ρ(t)→ ρ(t) + δρ(~k , t) , P(t)→ P(t) + δP(~k , t)

ikjδT 0
j = (ρ+ P)θ(~k , t) , (k̂i k̂j −

1
3
δij)δT i

j = −(ρ+ P)σ(~k , t)
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Summary Martin Elmer
Bose Einstein condensation of Dark Matter Axions?

Linear perturbation theory

(0-0) Einstein equation (in Fourier space inside the horizon):

|~p|2

R2(t)
φ̃(~p, t) ' 4πGNδρ̃(~p, t)

Poisson equation for density perturbations!

The evolution equation leading order (δ ≡ δρ̃(~p,t)
ρ(t) )

δ̈ + 2H δ̇ − 4πGρδ + c2
s

p2

R2(t)
δ = 0

• describes growth of fluctuations on cosmological scales
• fluctuations oscillate below Jean length λJeans ∼ 1/

√
H(t)m

• T i
j off diagonal terms of no importance

• no dissipation!
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