Bose Einstein condensation of Dark Matter Axions?

Martin Elmer

based on:

Sacha Davidson and M.E.

arXiv:1307.8024

IPNL Lyon

October 25, 2013 New Perspectives in Dark Matter

Outline

Axions, a short reminder

Sikivie's idea

Gravitational thermalisation?

Where to start Axion viscosity estimate Result

Summary

Outline

Axions, a short reminder

Sikivie's idea

Gravitational thermalisation?

Where to start Axion viscosity estimate Result

The idea:

Observable difference between axions and WIMPS if axions are in a Bose Einstein condensate

Different galactic halo structure

Summary

Strong CP problem

Review on axions: Raffelt, Stars as Laboratories for Fundamental Physics

QCD contains CP violating term

$$\mathcal{L}_{\Theta} = \Theta \frac{\alpha_s}{8\pi} G \widetilde{G}$$

induces neutron electric dipole moment ⇒ not observed

$$|\Theta| < 10^{-10}$$

Strong CP problem

Review on axions: Raffelt, Stars as Laboratories for Fundamental Physics

QCD contains CP violating term

$$\mathcal{L}_{\Theta} = \Theta \frac{\alpha_{s}}{8\pi} G \widetilde{G}$$

induces neutron electric dipole moment ⇒ not observed

$$|\Theta| < 10^{-10}$$

strong CP problem

Strong CP problem

Review on axions: Raffelt, Stars as Laboratories for Fundamental Physics

• QCD contains CP violating term

$$\mathcal{L}_{\Theta} = \Theta \frac{\alpha_s}{8\pi} G \widetilde{G}$$

induces neutron electric dipole moment ⇒ not observed

$$|\Theta| < 10^{-10}$$

strong CP problem

Peccei Quinn solution:

make ⊖ dynamical variable with potential min at 0

Peccei - Quinn Mechanism Peccei Quinn, Phys. Rev. D. 16 (1977)

- new $U(1)_{PQ}$ symmetry spontaneously broken at scale f_{PQ}
- axion a(x) = Gloldstone boson, "phase" of new complex scalar field
- gluon coupling by construction $\Rightarrow \mathcal{L}_{\Theta} o rac{\mathsf{a}(\mathsf{x})}{f_{PQ}} rac{lpha_{\mathsf{s}}}{8\pi} G\widetilde{G}$

Peccei - Quinn Mechanism Peccei Quinn, Phys. Rev. D. 16 (1977)

- new $U(1)_{PQ}$ symmetry spontaneously broken at scale f_{PQ}
- axion a(x) = Gloldstone boson, "phase" of new complex scalar field
- gluon coupling by construction $\Rightarrow \mathcal{L}_\Theta o rac{\mathsf{a}(\mathsf{x})}{f_{PQ}} rac{lpha_s}{8\pi} G\widetilde{G}$

- ullet mixing with pions \Rightarrow mass $m_a f_{PQ} \sim m_\pi f_\pi$ (after QCD phase transition)
- axion potential with minimum at a = 0
- CP conservation

Peccei - Quinn Mechanism Peccei Quinn, Phys. Rev. D. 16 (1977)

- new $U(1)_{PQ}$ symmetry spontaneously broken at scale f_{PQ}
- axion a(x) = Gloldstone boson, "phase" of new complex scalar field
- gluon coupling by construction $\Rightarrow \mathcal{L}_{\Theta} o rac{\mathsf{a}(\mathsf{x})}{\mathsf{f}_{\mathsf{PQ}}} rac{lpha_{\mathsf{s}}}{\mathsf{8}\pi} G\widetilde{G}$

- ullet mixing with pions \Rightarrow mass $m_a f_{PQ} \sim m_\pi f_\pi$ (after QCD phase transition)
- axion potential with minimum at a = 0
- CP conservation

f_{PQ} is the determining parameter!

(up to $\mathcal{O}(1)$ model dependent factors)

Axion cosmology

Misalignment mechanism Dine and Fischler, Phys Lett. B 120

- for $T \sim f_{PQ}$:
 - $\circ~U(1)_{PQ}$ spontaneously broken
 - axion field sits fixed at $a_{init} = \theta_{init} f_{PO}$
- after QCDPT ($T \sim 100 Mev$)
 - axion potential tilted ⇒ axion mass
 - axion field oscillates (classical field oscillations)
 - $\circ \Rightarrow cold dark matter$

Raffelt @ (BLV2013)

Axion cosmology

Misalignment mechanism Dine and Fischler, Phys Lett. B 120

- for $T \sim f_{PQ}$:
 - \circ $U(1)_{PQ}$ spontaneously broken
 - axion field sits fixed at $a_{init} = \theta_{init} f_{PQ}$
- after QCDPT ($T \sim 100 Mev$)
 - axion potential tilted ⇒ axion mass
 - axion field oscillates (classical field oscillations)
 - ⇒ cold dark matter
- Assuming inflation before PQ symmetry breaking

$$\Omega_a h^2 \sim 0,4 \left(rac{10 \mu eV}{m_a}
ight)^{7/6}$$

• good DM candidate: $m_a \gtrsim 10 \mu eV$

Raffelt @ (BLV2013)

Axion cosmology

Misalignment mechanism Dine and Fischler, Phys Lett. B 120

- for $T \sim f_{PQ}$:
 - \circ $U(1)_{PQ}$ spontaneously broken
 - axion field sits fixed at $a_{init} = \theta_{init} f_{PQ}$
- after QCDPT ($T \sim 100 Mev$)
 - axion potential tilted ⇒ axion mass
 - axion field oscillates (classical field oscillations)
 - ⇒ cold dark matter
- Assuming inflation before PQ symmetry breaking

$$\Omega_a h^2 \sim 0,4 \left(rac{10 \mu eV}{m_a}
ight)^{7/6}$$

• good DM candidate: $m_a \gtrsim 10 \mu eV$ Cosmic string decays

Raffelt @ (BLV2013)

Cold dark matter, ongoing discussion, Hiramatsu et al. arXiv:1202.5851, Sikivie

astro-ph/0610440 5 of 13

Astrophysics and laboratory searches G. Raffelt @ (BLV2013)

Sikivie et al's idea arxiv:0901.1106

Do axions behave differently than WIMPS?

(except for successful direct detection)

- If axions are in a Bose-Einstein condensate they develop a different galactic halo structure than WIMPs. (Caustics)
- BEC formation needs dissipation
- self-interaction λa^4 is not enough
- gravitational interaction (Saikawa, Yamaguchi et al, arXiv:1210.7080, arXiv:1310.0167)

Do gravitational interactions thermalize cosmic axions?

Our starting point

S.Davidson and M.E. arXiv:1307.8024

- Axions are born as classical field oscillations ⇒ classical problem
- What we already know about gravity:
 - o expands the universe

leading order solutions to GR

- grows density fluctuations
- Do not contain dissipation
- Fast interaction rate is not enough for BEC formation!
- Dissipative effects must be sub leading

How to divide gravity into deterministic and dissipative part?

Our trick

Observations:

- ullet off diagonal terms of $T_{\mu
 u}$ not used for leading order solutions
- imperfect fluid has viscosity on its off diagonal
- viscosity damps density fluctuations on short length scales ⇒ homogenisation, BEC formation?

Idea: Estimate axion viscosity by comparing T_{ij}

axion scalar field \Leftrightarrow imperfect fluid

perturbed metric /

∧ homogeneous metric

Viscosity estimate

scalar field:

$$T^i_j(ec{x},t) = -rac{1+2\phi}{R^2(t)}\partial_i a\partial_j a$$

imperfect fluid:

$$T^i_j(\vec{x},t) = -\eta(t)(\partial_j U^i(\vec{x},t) + \partial^i U_j(\vec{x},t))$$

 $\eta = \text{viscosity}, \ U_{\mu} = \text{fluid velocity}, \ \phi = \text{Newtonian potential}$

Viscosity estimate

scalar field:

$$T^i_j(ec{x},t) = -rac{1+2\phi}{R^2(t)}\partial_i a\partial_j a$$

imperfect fluid:

$$T_j^i(\vec{x},t) = -\eta(t)(\partial_j U^i(\vec{x},t) + \partial^i U_j(\vec{x},t))$$

 $\eta = \text{viscosity}, \ U_{\mu} = \text{fluid velocity}, \ \phi = \text{Newtonian potential}$

⇒ estimate viscosity

$$\frac{\eta(t)}{n_a(t)} \sim 2\pi G \sum_{p} \frac{\delta \widetilde{\rho}(p,t) R^2(t)}{|\vec{p}|^2}$$

Source of gravitational interactions $\delta \tilde{\rho}(p,t)$ can be dominated by axions or photons!

Viscosity impact

Decay rate for perturbation (comoving size $1/|\vec{p}|$) due to viscosity dumping

$$\Gamma_g \sim rac{\eta(t)|ec{p}|^2}{R^2(t)\overline{
ho}(t)} \sim rac{Gm_a^2n_a(t)}{H_{QCD}^2}rac{p^2}{m_a^2}rac{R(t)}{R_{eq}}$$

Comparing $\Gamma_g \sim H$ gives damping scale: $\ell_{damp}^2(t=1/H)$ Results:

- Damping scale is always smaller than the Jeans length!!
- no effects on cosmological length scales
- No thermalisation on horizon scales found!

Picture of gravitational thermalisation

- Leading order solutions of GR:
 - Homogeneous part of axion energy density drives expansion
 - Density perturbations grow at leading order
- Dissipation cannot be obtained from time-reversal invariant classical field equations at leading order

Picture of gravitational thermalisation

- Leading order solutions of GR:
 - Homogeneous part of axion energy density drives expansion
 - Density perturbations grow at leading order
- Dissipation cannot be obtained from time-reversal invariant classical field equations at leading order
- Dissipative effects of gravity must be suppressed
- estimation of axion viscosity gives negligible effects on cosmological scales
- No claim that our estimate is leading order dissipative process

Summary

- axions are very interesting CDM candidates, soon news from ADMX
 Do axions behave differently from WIMPS?
- Sikivie's idea: difference when axions form a BEC
- BEC formation needs dissipation
- Is thermalisation provided by gravitational interaction?
- Our thermalisation estimate
 - o leading order gravitational effects do not contain dissipation
 - look for sub-leading effects
 - trick: estimate axion viscosity

 dumping of fluctuations on negligible small scales
- We cannot confirm gravitational axion thermalisation!

Backup

Dynamics determined by

- Einstein equations $G_{\mu\nu}=8\pi G T_{\mu\nu}$
- Energy momentum conservation $T^{\mu\nu}_{;\nu}=0$

Dynamics determined by

- Einstein equations $G_{\mu\nu}=8\pi G T_{\mu\nu}$
- Energy momentum conservation $T^{\mu\nu}_{;\nu}=0$

Metric

Stress energy tensor

Dynamics determined by

- Einstein equations $G_{\mu\nu}=8\pi G T_{\mu\nu}$
- Energy momentum conservation $T^{\mu\nu}_{;\nu}=0$

Metric in Newtonian gauge

$$ds^{2} = (1 + 2\psi)dt^{2} - R^{2}(t)(1 - 2\phi)\delta_{ij}dx^{i}dx^{j}$$

Stress energy tensor

- scalar field $T^{\mu}_{\nu} = \partial^{\mu} a \partial_{\nu} a \frac{1}{2} (\partial_{\alpha} a \partial^{\alpha} a m^2 a^2) \delta^{\mu}_{\nu}$
- in a homogeneous and isotropic Universe $T^{\mu}
 u = {\sf diag}(ar{
 ho}, ar{P}, ar{P})$
- adding scalar perturbations:

$$\overline{\rho}(t) \to \overline{\rho}(t) + \delta \rho(\vec{k}, t) , \ \overline{P}(t) \to \overline{P}(t) + \delta P(\vec{k}, t)$$
$$ik_j \delta T_j^0 = (\overline{\rho} + \overline{P}) \theta(\vec{k}, t) , \ (\hat{k}_i \hat{k}_j - \frac{1}{3} \delta_{ij}) \delta T_j^i = -(\overline{\rho} + \overline{P}) \sigma(\vec{k}, t)$$

(0-0) Einstein equation (in Fourier space inside the horizon):

$$\frac{|\vec{p}|^2}{R^2(t)}\widetilde{\phi}(\vec{p},t) \simeq 4\pi G_N \delta \widetilde{\rho}(\vec{p},t)$$

Poisson equation for density perturbations!

The evolution equation leading order $(\delta \equiv \frac{\delta \widetilde{
ho}(\vec{p},t)}{\overline{
ho}(t)})$

$$\ddot{\delta} + 2H\dot{\delta} - 4\pi G\overline{\rho}\delta + c_s^2 \frac{p^2}{R^2(t)}\delta = 0$$

- describes growth of fluctuations on cosmological scales
- fluctuations oscillate below Jean length $\lambda_{Jeans} \sim 1/\sqrt{H(t)m}$
- T_i^i off diagonal terms of no importance
- no dissipation!