The latest progress of CDEX experiment Qing Wang Tsinghua University On behalf of CDEX Collaboration Oct. 24, 2013 #### Outline: China Jinping Underground Laboratory (CJPL) CJPL; CJPL-II China Dark Matter Experiment (CDEX) & Status CDEX-1; CDEX-10; CDEX-1T Summary #### International Main Undergound Laboratories ## **Two Direction Developments** - Enhance Detection Efficiency - increase detector target mass kg-ton-kt - reduce detector energy threshold 10keV-1keV-100eV - Suppress Backgrounds - shield cosmic ray better - passive shield with Pb, Cu, PE... - active shield with LS - develop high efficiency signal discrimination ### **UL** in the world(rock overburden) ## Yalong River and Jinping Mountain # China JinPing Underground Laboratoy (CJPL) ## China Jinping Underground Laboratory ## Logistic Condition of this UL CJPL internal layout 10 km long air ventilation pipe built to pump the fresh air Wall is covered by a layer of air-proof resin from outside the transport tunnel into the CJPL space. to separate it from the rock Entrance tunnel 30m Connection tunnel Ventilation CDEX GeTHU PANDAX ●Main Hall:6.5*7.5*40m ●Total Volume~4000m³ CJPL 🚣 CJPL background facility low background germanium spectrometer ## CJPL Rock Background | (Unit: Bq/kg) | K-40 | Ra-226
(609keV) | Th-232
(911keV) | |--------------------------------|--------|--------------------|--------------------| | CJPL Rock Sample | < 1. 1 | 1.8 ± 0.2 | < 0. 27 | | Beijing Normal
Ground Level | ~600 | ~25 | ~50 | The radioactivity of surrounding environment at CJPL - plastic scintillators is 1 m \times 0.5 m \times 0.05 m - 6 pieces divided into two group #### Muon flux @ CJPL #### In-situ gamma spectra by a portable gamma spectroscoper # Fast neutron flux measurement in CJPL (Gd-load LS detector) Neutrons from Rock $\sim 3.129 \times 10^{-12}$ cpd neutrons from concrete layer \sim 6.490 \times 10-10 cpd; | | Hall | PE shielding | |----------------------|---|---| | Thermal Neutron Rate | ~30 cpd | < 1 cpd | | Thermal Neutron Flux | 4.34 x10 ⁻⁶ n/cm ² /s | < 1.45 x10 ⁻⁷ n/cm ² /s | ## CJPL Future: CJPL-II Total volume 10⁵m³米 锦屏地下实验室二期建设规划布置图 1:1000 Four 12m*12m*150m rooms, to be finished in 2015. #### CDEX – Status - Membership SiChuan University Nankai University China Institute of Atomic Energy Ertan Hydropower Development Compa Yalong River Company #### CDEX Target: Direct Search of Cold Dark Matter with O(10 kg) Ge detectors of SubkeV Energy Sensitivity. Goal: O(0.1cpkkd), < 300eV ### Before and after CDEX born 2015: Design of CDEX-1T (based on new CJPL space) 2014: CDEX-10 10kg Ge array + LAr shielding 2013: CDEX-1 preliminary result(without B/S and ACV) 2011: CDEX-1 Detector test and data taking 2010: CJPL run; CDEX-1 20g Array +1kg PPCGe 2009: CJPL planed; CDEX was born 2005: 5g Ge det. run in Y2L, S. Korea 2003: Join in TEXONO and KIMS ## CDEX-1kg @ CJPL ✓ Mass of Ge target: 20g, 1000g. ✓ Point-contact Ge detector with ultra-low energy threshold (< 300eV).</p> ✓ Further ultra-pure crystal serve as active shielding and anti-compton detector. ## CDEX-1 Shielding System PE shielding room CDEX-1 Shielding system #### Background understand of PCGe detector # 1kg-Ge Background spectrum #### Bulk/surface discrimination #### Finished simulation $$d_{\text{front}} = d_{\text{side}} =$$ $0.0 \sim 1.5 \text{ mm}$ #### PHYSICAL REVIEW D 88, 052004 (2013) #### First results on low-mass WIMPs from the CDEX-1 experiment at the China Jinping underground laboratory W. Zhao,¹ Q. Yue,^{1,*} K. J. Kang,¹ J. P. Cheng,¹ Y. J. Li,¹ S. T. Lin,^{7,†} Y. Bai,³ Y. Bi,⁵ J. P. Chang,⁴ N. Chen,¹ N. Chen,¹ Q. H. Chen,¹ Y. H. Chen,⁶ Y. C. Chuang,^{7,†} Z. Deng,¹ C. Du,¹ Q. Du,¹ H. Gong,¹ X. Q. Hao,¹ H. J. He,¹ Q. J. He,¹ X. H. Hu,³ H. X. Huang,² T. R. Huang,^{7,†} H. Jiang,¹ H. B. Li,^{7,†} J. M. Li,¹ J. Li,¹ J. Li,⁴ X. Li,² X. Y. Li,³ Y. L. Li,¹ H. Y. Liao,^{7,†} F. K. Lin,^{7,†} S. K. Liu,⁵ L. C. Lü,¹ H. Ma,¹ S. J. Mao,⁴ J. Q. Qin,¹ J. Ren,² J. Ren,¹ X. C. Ruan,² M. B. Shen,⁶ L. Singh,^{7,8,†} M. K. Singh,^{7,8,†} A. K. Soma,^{7,8,†} J. Su,¹ C. J. Tang,⁵ C. H. Tseng,^{7,†} J. M. Wang,⁶ L. Wang,⁵ Q. Wang,¹ H. T. Wong,^{7,†} S. Y. Wu,⁶ W. Wu,³ Y. C. Wu,¹ Y. C. Wu,⁴ Z. Z. Xianyu,¹ H. Y. Xing,⁵ Y. Xu,³ X. J. Xu,¹ T. Xue,¹ L. T. Yang,¹ S. W. Yang,^{7,†} N. Yi,¹ C. X. Yu,³ H. Yu,¹ X. Z. Yu,⁵ X. H. Zeng,⁶ Z. Zeng,¹ L. Zhang,⁴ Y. H. Zhang,⁶ M. G. Zhao,³ S. N. Zhong,³ Z. Y. Zhou,² J. J. Zhu,⁵ W. B. Zhu,⁴ X. Z. Zhu,¹ and Z. H. Zhu⁶ #### (CDEX Collaboration) ¹Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084 ²Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413 ³School of Physics, Nankai University, Tianjin 300071 ⁴NUCTECH Company, Beijing 10084 ⁵School of Physical Science and Technology, Sichuan University, Chengdu 610065 ⁶YaLong River Hydropower Development Company, Chengdu 610051 ⁷Institute of Physics, Academia Sinica, Taipei 11529 ⁸Department of Physics, Banaras Hindu University, Varanasi 221005 (Received 18 June 2013; published 9 September 2013) The China Dark Matter Experiment Collaboration reports the first experimental limit on weakly interacting massive particles (WIMPs) dark matter from 14.6 kg-days of data taken with a 905_{S} g p-type point-contact germanium detector at the China Jinping underground laboratory where the rock overburden is more than 2400 m. The energy threshold achieved was 400 eVee. According to the 14.6 kg-day live data, we placed the limit of $\sigma_{\chi N} = 1.75 \times 10^{-40}$ cm² at a 90% confidence level on the spin-independent cross section at a WIMP mass of 7 GeV before differentiating bulk signals from the surface backgrounds. DOI: 10.1103/PhysRevD.88.052004 PACS numbers: 95.35.+d, 29.40.Wk ## CDEX-1 low energy spectra ## CDEX-10kg Experiment Ge: Encapsuled into copper vacuum tube. LAr: Passive shielding +Active shielding. PMT Detecting ~420nm light WLS: Transfering 128nm light to~420nm light. # CDEX shielding system ## **CDEX-10** simulation ## PCGe detector ## LAr AC detector # CDEX-10 LAr AC system ## Summary - CJPL with deepest rock overburden in the world run now. CJPL-II with 20 times space under design. - CDEX has started CDEX-1 experiment, and a first physics result is already published. - CDEX-10 (PCGe+Lar AC) already start ground testing at SCU from this May and plan to ship to CJPL in 2014. - CDEX-1T related technologies has been exploited by CDEX including background understanding, detector fabrication, crystal growth, electronics and so on. CJPL 🛳 中国锦屏地下实验室 China Jinping Underground Laboratory Thank you for your attention!