The latest progress of CDEX experiment

Qing Wang
Tsinghua University
On behalf of CDEX Collaboration
Oct. 24, 2013

Outline:

China Jinping Underground Laboratory (CJPL)

CJPL; CJPL-II

China Dark Matter Experiment (CDEX) & Status

CDEX-1; CDEX-10; CDEX-1T

Summary

International Main Undergound Laboratories

Two Direction Developments

- Enhance Detection Efficiency
- increase detector target mass kg-ton-kt
- reduce detector energy threshold 10keV-1keV-100eV
- Suppress Backgrounds
- shield cosmic ray better
- passive shield with Pb, Cu, PE...
- active shield with LS
- develop high efficiency signal discrimination

UL in the world(rock overburden)

Yalong River and Jinping Mountain

China JinPing Underground Laboratoy (CJPL)

China Jinping Underground Laboratory

Logistic Condition of this UL

CJPL internal layout 10 km long air ventilation pipe built to pump the fresh air Wall is covered by a layer of air-proof resin from outside the transport tunnel into the CJPL space. to separate it from the rock Entrance tunnel 30m Connection tunnel Ventilation CDEX GeTHU PANDAX ●Main Hall:6.5*7.5*40m ●Total Volume~4000m³ CJPL 🚣 CJPL background facility low background germanium spectrometer

CJPL Rock Background

(Unit: Bq/kg)	K-40	Ra-226 (609keV)	Th-232 (911keV)
CJPL Rock Sample	< 1. 1	1.8 ± 0.2	< 0. 27
Beijing Normal Ground Level	~600	~25	~50

The radioactivity of surrounding environment at CJPL

- plastic scintillators is 1 m \times 0.5 m \times 0.05 m
- 6 pieces divided into two group

Muon flux @ CJPL

In-situ gamma spectra by a portable gamma spectroscoper

Fast neutron flux measurement in CJPL

(Gd-load LS detector)

Neutrons from Rock $\sim 3.129 \times 10^{-12}$ cpd

neutrons from concrete layer \sim 6.490 \times 10-10 cpd;

	Hall	PE shielding
Thermal Neutron Rate	~30 cpd	< 1 cpd
Thermal Neutron Flux	4.34 x10 ⁻⁶ n/cm ² /s	< 1.45 x10 ⁻⁷ n/cm ² /s

CJPL Future: CJPL-II

Total volume 10⁵m³米

锦屏地下实验室二期建设规划布置图 1:1000

Four 12m*12m*150m rooms, to be finished in 2015.

CDEX – Status - Membership

SiChuan University

Nankai University

China Institute of Atomic Energy

Ertan Hydropower Development Compa

Yalong River Company

CDEX Target:

Direct Search of Cold Dark Matter with O(10 kg) Ge detectors of SubkeV Energy Sensitivity.

Goal: O(0.1cpkkd), < 300eV

Before and after CDEX born

2015: Design of CDEX-1T (based on new CJPL space)

2014: CDEX-10 10kg Ge array + LAr shielding

2013: CDEX-1 preliminary result(without B/S and ACV)

2011: CDEX-1 Detector test and data taking

2010: CJPL run; CDEX-1 20g Array +1kg PPCGe

2009: CJPL planed; CDEX was born

2005: 5g Ge det. run in Y2L, S. Korea

2003: Join in TEXONO and KIMS

CDEX-1kg @ CJPL

✓ Mass of Ge target: 20g, 1000g.

✓ Point-contact Ge detector with ultra-low energy threshold (< 300eV).</p>

✓ Further ultra-pure crystal serve as active shielding and anti-compton detector.

CDEX-1 Shielding System

PE shielding room

CDEX-1
Shielding
system

Background understand of PCGe detector

1kg-Ge Background spectrum

Bulk/surface discrimination

Finished simulation

$$d_{\text{front}} = d_{\text{side}} =$$

 $0.0 \sim 1.5 \text{ mm}$

PHYSICAL REVIEW D 88, 052004 (2013)

First results on low-mass WIMPs from the CDEX-1 experiment at the China Jinping underground laboratory

W. Zhao,¹ Q. Yue,^{1,*} K. J. Kang,¹ J. P. Cheng,¹ Y. J. Li,¹ S. T. Lin,^{7,†} Y. Bai,³ Y. Bi,⁵ J. P. Chang,⁴ N. Chen,¹ N. Chen,¹ Q. H. Chen,¹ Y. H. Chen,⁶ Y. C. Chuang,^{7,†} Z. Deng,¹ C. Du,¹ Q. Du,¹ H. Gong,¹ X. Q. Hao,¹ H. J. He,¹ Q. J. He,¹ X. H. Hu,³ H. X. Huang,² T. R. Huang,^{7,†} H. Jiang,¹ H. B. Li,^{7,†} J. M. Li,¹ J. Li,¹ J. Li,⁴ X. Li,² X. Y. Li,³ Y. L. Li,¹ H. Y. Liao,^{7,†} F. K. Lin,^{7,†} S. K. Liu,⁵ L. C. Lü,¹ H. Ma,¹ S. J. Mao,⁴ J. Q. Qin,¹ J. Ren,² J. Ren,¹ X. C. Ruan,² M. B. Shen,⁶ L. Singh,^{7,8,†} M. K. Singh,^{7,8,†} A. K. Soma,^{7,8,†} J. Su,¹ C. J. Tang,⁵ C. H. Tseng,^{7,†} J. M. Wang,⁶ L. Wang,⁵ Q. Wang,¹ H. T. Wong,^{7,†} S. Y. Wu,⁶ W. Wu,³ Y. C. Wu,¹ Y. C. Wu,⁴ Z. Z. Xianyu,¹ H. Y. Xing,⁵ Y. Xu,³ X. J. Xu,¹ T. Xue,¹ L. T. Yang,¹ S. W. Yang,^{7,†} N. Yi,¹ C. X. Yu,³ H. Yu,¹ X. Z. Yu,⁵ X. H. Zeng,⁶ Z. Zeng,¹ L. Zhang,⁴ Y. H. Zhang,⁶ M. G. Zhao,³ S. N. Zhong,³ Z. Y. Zhou,² J. J. Zhu,⁵ W. B. Zhu,⁴ X. Z. Zhu,¹ and Z. H. Zhu⁶

(CDEX Collaboration)

¹Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing 100084

²Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413

³School of Physics, Nankai University, Tianjin 300071

⁴NUCTECH Company, Beijing 10084

⁵School of Physical Science and Technology, Sichuan University, Chengdu 610065

⁶YaLong River Hydropower Development Company, Chengdu 610051

⁷Institute of Physics, Academia Sinica, Taipei 11529

⁸Department of Physics, Banaras Hindu University, Varanasi 221005

(Received 18 June 2013; published 9 September 2013)

The China Dark Matter Experiment Collaboration reports the first experimental limit on weakly interacting massive particles (WIMPs) dark matter from 14.6 kg-days of data taken with a 905_{S} g p-type point-contact germanium detector at the China Jinping underground laboratory where the rock overburden is more than 2400 m. The energy threshold achieved was 400 eVee. According to the 14.6 kg-day live data, we placed the limit of $\sigma_{\chi N} = 1.75 \times 10^{-40}$ cm² at a 90% confidence level on the spin-independent cross section at a WIMP mass of 7 GeV before differentiating bulk signals from the surface backgrounds.

DOI: 10.1103/PhysRevD.88.052004 PACS numbers: 95.35.+d, 29.40.Wk

CDEX-1 low energy spectra

CDEX-10kg Experiment

Ge: Encapsuled into copper vacuum tube.

LAr: Passive shielding +Active shielding.

PMT Detecting ~420nm light

WLS: Transfering 128nm light to~420nm light.

CDEX shielding system

CDEX-10 simulation

PCGe detector

LAr AC detector

CDEX-10 LAr AC system

Summary

- CJPL with deepest rock overburden in the world run now.
 CJPL-II with 20 times space under design.
- CDEX has started CDEX-1 experiment, and a first physics result is already published.
- CDEX-10 (PCGe+Lar AC) already start ground testing at SCU from this May and plan to ship to CJPL in 2014.
- CDEX-1T related technologies has been exploited by CDEX including background understanding, detector fabrication, crystal growth, electronics and so on.

CJPL 🛳

中国锦屏地下实验室 China Jinping Underground Laboratory

Thank you for your attention!