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• a strongly-coupled sector at the multi-TeV scale and the 
Higgs as a composite pNGB

• DM as a composite pNGB coupled to the composite Higgs: 
the interactions are determined by global symmetries

• phenomenology:  the effect of compositeness on                         
the DM relic density, the Higgs searches & the DM searches
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• spontaneously symmetry breaking (SB) of a global 
symmetry: massless spin-0 field with only derivative 
interactions, an exact Nambu-Goldstone boson (NGB)

• explicitly SB (by a coupling or an anomaly): the pseudo-
NGB acquires a mass and non-derivative interactions

• approximate symmetry: the scale of spontaneous SB is 
larger than the scale of explicit SB / the source of 
explicit SB are weak couplings
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Virtues of pNGBs as dark matter

• The pNGB mass scale is not chosen ad-hoc: it is induced by a 
physical scale, e.g. ΛQCD or ΛEW, and it is radiatively stable

• Explicit SB parameters induce both the pNGB mass & its 
couplings to the SM, that control its relic density:           
compelling correspondence between mDM and ΩDM

• Rationale for DM stability: either SB preserves a remnant global 
symmetry that forbids DM decays, or DM is sufficiently long-
lived because the spontaneous SM scale f is very large, τDM ∼ f2



• Before coming to compositeness, a light 
pNGB just means that the effective theory 
to be studied amounts to the SM plus a 
gauge singlet real scalar η 

• Assuming a parity η → -η, the only 
renormalizable coupling to the SM is the 
Higgs portal: λ H† H η η

• A warm-up exercise: let us compute the η 
relic density in this minimal case

Minimal renormalizable model
extensively studied:

Silveira Zee ’85, McDonald ’94,
Burgess Pospelov ter Veldhuis ’01,

...

A oversimplified set-up
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The Higgs portal to dark matter

(ii) a parity η → −η is preserved, as a residual global symmetry

(iii) a direct mass term η2 is suppressed, that can be the case in some models 

(i) explicit SB induces a quartic coupling between H and a pNGB η

At temperatures T∼mh the interaction λ may or may not thermalize η

Thermalization for:
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Freeze-out or... freeze-in

zf.o. = mη/T

zf.o. = mθ/T

zf.i. = mh/T

from Hall, Jedamzik, 
March-Russell, West,  

2009Y = n/s

thermal value 
of Yη               freeze

-out

freeze-in

arrows indicate 
increasing values of λ

(of Yh)

• Freeze-in: a less-than-thermal 
population of η’s is produced by   
the annihilation/decay of heavier 
particles, X= h, W, Z.                                      
The η number density reaches a 
plateau at T ≈ mX.                                                                              
We found that ΩDM is reproduced 
for mη ≈ 3 MeV (λ≈10-10).

Frigerio, Hambye, Masso 2011 

• Freeze-out: η thermalizes and later 
decouples, at T ≤ mη.                     
To obtain the correct ΩDM one 
needs mη ≈ 50 GeV.

e.g. Farina, Pappadopulo, Strumia, 2010
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The QCD scale and the pions

MPlanck

ΛQCD

mπ

Spontaneous breaking of chiral symmetry leads to               
3 pNGBs: the composite mesons π0, π±

Explicit breaking by quark masses makes them massive

αs ∼ 1 , SU(2)L × SU(2)R → SU(2)V

In fact the global symmetry turned out to be larger, 
leading to more pNGBs in the spectrum: kaons and η0

ΛQCD ∼ MPl exp

(
− 1

b0αs(MPl)

)
dimensional transmutation
Coleman,Weinberg ’73
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Around TeV scale, new physics is required to protect        
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Nature repeats itself with a new strongly coupled sector

Gauge couplings g,g’ and Yukawa couplings yt, yb, ... break 
explicitly SO(5)→SU(2)L and induce EWSB radiatively



MPlanck

mh

ΛEW

The EW scale and the DM

The global symmetry may be larger 
In particular, the set of composite pNGBs can include the 
Higgs doublet H and a gauge singlet η

 mη

O(6) → O(5) (H, η) ∼ 5O(5) = (4 + 1)SO(4)



MPlanck

mh

ΛEW

The EW scale and the DM

The global symmetry may be larger 
In particular, the set of composite pNGBs can include the 
Higgs doublet H and a gauge singlet η

 mη
Gauge couplings g,g’ and Yukawa couplings yt, yb, ... 
break explicitly O(6)→Z2 x SU(2)L with η → -η

O(6) → O(5) (H, η) ∼ 5O(5) = (4 + 1)SO(4)



MPlanck

mh

ΛEW

The EW scale and the DM

The global symmetry may be larger 
In particular, the set of composite pNGBs can include the 
Higgs doublet H and a gauge singlet η

 mη
Gauge couplings g,g’ and Yukawa couplings yt, yb, ... 
break explicitly O(6)→Z2 x SU(2)L with η → -η

O(6) → O(5) (H, η) ∼ 5O(5) = (4 + 1)SO(4)

The composite singlet η is born automatically 
with the mass & the interactions of a WIMP

MF,Pomarol,Riva,Urbano’12
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The composite sector (II)

mρ = gρ f

f

v = 246 GeV

composite resonances with mass mρ ≈ few TeV
and inter-composite coupling  1 < gρ < 4π

the characteristic scale of the pNGBs chiral lagrangian

A non-zero Veff(H,η) is generated radiatively by gauge and 
fermion loops.  At the minimum <H> = v realizes EWSB. 

Giudice-Grojean-Pomarol-Rattazzi ’07

The couplings of elementary fields with 
composite operators break explicitly 

(weakly) G, while preserving GSM
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The DM global symmetries

At ΛEW ∼ 3-4 TeV, the strong dynamics breaks spontaneously O(6)→O(5)

The coset of this non-linear σ-model:

A parity  η → - η  guarantees the DM stability:

The DM mass is protected by a shift symmetry  η → η + α
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DM effective Lagrangian
Below the strong-coupling scale ΛEW ∼ 3-4 TeV, the Lagrangian for h and η 
can be expanded in 1/f, with f the pNGB decay constant

Interactions with the elementary fermions proportional to Yukawas

If the top couplings break (preserve) the η-shift symmetry, then ct is of order one 
(vanishes); analogously for the other fermions

Effective potential generated by fermion loops

mη > O(100) GeV for ct = O(1)
mη > O(10) GeV for cb = O(1)

Derivative interactions fixed by the O(6)/O(5) symmetry 

DM-Higgs interaction 
growing with momentum
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Composite DM interactions
Couplings in the 
case SM + singlet 
with no 
compositeness

Three main effects of 
compositeness:

• new pNGB couplings 
proportional to p2 / f2

• new DM-ψ couplings 
of order  mψ / f2

• order ξ corrections to 
the Higgs couplings

ξ ≡ (v/f)2



The relic density of η

dashed line: no compositeness (SM + singlet)
solid lines: compositeness with the bottom coupled to η
(dotted lines: compositeness with also the top coupled to η)

Higgs
resonance

suppression of
η-η-h vertex
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Bounds from DM searches
Invisible Higgs decays into DM:  h → ηη
(plus visible decays corrected at order ξ)

ATLAS & CMS:
Γinv ≲ ΓSM / 4
(95%C.L.)

DM elastic scattering on nuclei:  η N → η N

XENON 100:
σSI ≲ 10-44cm2 for     

mη ∼ (20-500) GeV 

DM annihilations today:  η η → b b-bar, WW, γγ, ...  (work in progress)

The signal is enhanced close to the Higgs resonance, where ⟨σvrel⟩ differs 
significantly from the freeze-out one. Constraints from FERMI-LAT,  AMS, ...

non-composite case: Cline-Kainulainen-Scott-Weniger ’13
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(2011)

f = 500 GeV
dashed: elementary DM

       
solid: composite DM

with f = 500 GeV

Purple: relic density 
contours with Ωη = ΩDM

Red: disfavoured by       
LHC Higgs searches

Green: disfavoured by    
DM direct searches

below the yellow line: 
theoretically favoured        

( λ ≤ mη2 / f2 )

effect of 
composi-

teness 
maximized
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• These searches may cover some allowed regions in the plane             
mη - λ, and be competitive in particular for mη > mh/2

• We are studying how the jet pT distribution depends on the 
relative size of λ and of the derivative coupling ...

Sylvain Lacroix, preliminary

λ = 0.1 only
f = 1 TeV only 
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Conclusions

• pNGBs could be the first (the lightest) piece of evidence 
for new physics associated to the electroweak scale

• the set of pNGBs may include the Higgs h as well as                      
a scalar DM candidate η

• compositeness solves the hierarchy problem of light 
scalars, and it modifies profoundly the couplings of h and η

• composite scalar DM has mass in the range 60 to 500 GeV 
and can be probed very effectively in collider searches and 
DM searches


