Performance of LHC searches with MET for models of Universal Extra Dimensions

Luca Panizzi

University of Southampton, UK

Outline

A realistic scenario: UED in the RP²

Outline

A toy model

Universal extra-dimensions

All SM fields can propagate in the full D-dimensional background

Assumption 1: compact extra-dimension

 $x_{5,6,\ldots}$ are limited to a finite interval $\{0, 2\pi R_{5,6,\ldots}\}$

effective 4D theory up to distance scales of the order of the compactification radii R_{5,6,...}

Universal extra-dimensions

All SM fields can propagate in the full D-dimensional background

Assumption 1: compact extra-dimension

```
x_{5,6,...} are limited to a finite interval \{0, 2\pi R_{5,6,...}\}
```

effective 4D theory up to distance scales of the order of the compactification radii R_{5,6,...}

Assumption 2: flat metric

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu} - \delta_{ab}dy^a dy^b$$

Universal extra-dimensions

All SM fields can propagate in the full D-dimensional background

Assumption 1: compact extra-dimension

```
x_{5,6,...} are limited to a finite interval \{0, 2\pi R_{5,6,...}\}
```

effective 4D theory up to distance scales of the order of the compactification radii R_{5,6,...}

Assumption 2: flat metric

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu} - \delta_{ab}dy^a dy^b$$

A field that propagates in D-dimensions can be Fourier-expanded

$$\Phi(x_{\mu}, x_5, x_6, \dots) = \sum_{k_5, k_6, \dots} \phi^{(k_5, k_6, \dots)}(x_{\mu}) e^{i(\frac{k_5}{R_5}x_5 + \frac{k_6}{R_6}x_6 + \dots)}$$

$$0 = \tilde{p}^2 = p^2 - \sum_i p_i^2 = p^2 - \frac{k_5^2}{R_5^2} - \frac{k_6^2}{R_6^2} - \dots \qquad \longrightarrow \qquad \text{KK-mass:} \ m_{k_5,k_6}^2 = \frac{k_5^2}{R_5^2} + \frac{k_6^2}{R_6^2} + \dots$$

Compactification

example in 5D

Compactification on a circle $x_5 \in \{0, 2\pi R\}$

Clifford algebra in 5D contains γ_5

 $\{\Gamma_{\mu}, \Gamma_{\nu}\} = 2\eta_{\mu\nu}$ with $\Gamma_{\mu} \equiv \gamma_{\mu}$ and $\Gamma_{5} \equiv -i\gamma_{5}$

A chirality projector is missing

Fermions are 4-component Dirac spinors

After KK expansion no chiral 4D modes

Compactification

example in 5D

Compactification on a circle $x_5 \in \{0, 2\pi R\}$

Clifford algebra in 5D contains γ_5

 $\{\Gamma_{\mu}, \Gamma_{\nu}\} = 2\eta_{\mu\nu}$ with $\Gamma_{\mu} \equiv \gamma_{\mu}$ and $\Gamma_{5} \equiv -i\gamma_{5}$

A chirality projector is missing

Fermions are 4-component Dirac spinors

After KK expansion no chiral 4D modes

Compactification on an interval (orbifold) Identification of opposite points

Parity operator

 $P(x_5) = -x_5$ $\Phi(x^{\mu}, -x_5) = P(\Phi)(x^{\mu}, x_5)$

Invariance of the action requires

 $P(\Psi_L) = +\Psi_L \qquad P(\Psi_R) = -\Psi_R$

 $\begin{array}{l} \text{After} \quad \left\{ \Psi_L(x,x_5) \sim \sum_{n=0}^{\infty} \psi_L^{(n)}(x) \cos\left(\frac{n}{R}x_5\right) \\ \Psi_R(x,x_5) \sim \sum_{n=1}^{\infty} \psi_R^{(n)}(x) \sin\left(\frac{n}{R}x_5\right) \end{array} \right. \end{array}$

Zero-mode chiral fermions

KK-parity and Dark Matter

example in 5D

Discrete symmetry around the midpoint of the interval

 $x_5 \rightarrow \pi R - x_5$

Under this symmetry $\begin{cases} \cos\left(\frac{n}{R}(x_5 + \pi R)\right) \\ \sin\left(\frac{n}{R}(x_5 + \pi R)\right) \end{cases} = (-1)^n \begin{cases} \cos\left(\frac{n}{R}x_5\right) \\ \sin\left(\frac{n}{R}x_5\right) \end{cases}$ Modes with odd n flip sign

Invariance of the action under KK symmetry Interactions must contain an even number of modes with odd n

KK-parity and Dark Matter

example in 5D

Discrete symmetry around the midpoint of the interval

 $x_5 \rightarrow \pi R - x_5$

Under this symmetry $\begin{cases} \cos\left(\frac{n}{R}(x_5 + \pi R)\right) \\ \sin\left(\frac{n}{R}(x_5 + \pi R)\right) \end{cases} = (-1)^n \begin{cases} \cos\left(\frac{n}{R}x_5\right) \\ \sin\left(\frac{n}{R}x_5\right) \end{cases}$ Modes with odd n flip sign

Invariance of the action under KK symmetry Interactions must contain an even number of modes with odd n

The lightest KK-odd level is stable —> Dark Matter candidate!

Renormalisation group equations

Typically **large** mass gap between strongly- and weakly-interacting particles

UED: effective theory

O(10 TeV) (cutoff scale)

TeV (EWSB scale)

Typically **small** mass gap between strongly- and weakly-interacting particles

Renormalisation group equations

Typically **large** mass gap between strongly- and weakly-interacting particles

UED: effective theory

O(10 TeV) (cutoff scale)

TeV (EWSB scale)

Typically **small** mass gap between strongly- and weakly-interacting particles

Spin of the Dark Matter candidate

Neutralino (fermion)

Lightest KK-odd recurrence (scalar or vector)

Renormalisation group equations

Typically **large** mass gap between strongly- and weakly-interacting particles

UED: effective theory

O(10 TeV) (cutoff scale)

TeV (EWSB scale)

Typically **small** mass gap between strongly- and weakly-interacting particles

Spin of the Dark Matter candidate

Neutralino (fermion)

Lightest KK-odd recurrence (scalar or vector)

Even and odd states under parity

SUSY particles are **only odd** under R-parity and necessarily decay into DM KK-even tiers may decay directly into SM or into 2 odd states (and then to DM)

Renormalisation group equations

Typically **large** mass gap between strongly- and weakly-interacting particles

UED: effective theory

O(10 TeV) (cutoff scale)

TeV (EWSB scale)

Typically **small** mass gap between strongly- and weakly-interacting particles

Spin of the Dark Matter candidate

Neutralino (fermion)

Lightest KK-odd recurrence (scalar or vector)

Even and odd states under parity

SUSY particles are **only odd** under R-parity and necessarily decay into DM

KK-even tiers may decay directly into SM or into 2 odd states (and then to DM)

Signals with MET from SUSY or UED may have different properties

Outline

3 A realistic scenario: UED in the RP²

The model and its signature

Ingredients

- 1 heavy up-type quark U₁ (representative of the KK quark recurrences)
- 1 neutral scalar particle A₁ (the Dark Matter candidate)

$$M(U_1) > M(A_1)$$
 \longrightarrow $U_1 \longrightarrow A_1$ (invisible)

The model and its signature

Ingredients

- 1 heavy up-type quark U_1 (representative of the KK quark recurrences)
- 1 neutral scalar particle A_1 (the Dark Matter candidate)

$$M(U_1) > M(A_1)$$
 \longrightarrow $U_1 \longrightarrow A_1$ (invisible)

(relevance of ISR and FSR: boosted events, unbalance in MET)

The model and its signature

Ingredients

- 1 heavy up-type quark U_1 (representative of the KK quark recurrences)
- 1 neutral scalar particle A₁ (the Dark Matter candidate)

$$M(U_1) > M(A_1)$$
 \longrightarrow $U_1 \longrightarrow A_1$ (invisible)

(relevance of ISR and FSR: boosted events, unbalance in MET)

How to test this signal against available SUSY-tuned searches?

Let's consider a fictional search with 1 bin

Observation

310 events

Background

300 events

Let's consider a fictional search with 1 bin

Let's consider a fictional search with 1 bin

Let's consider a fictional search with 1 bin

Simulate the signal, apply the cuts used in the search and find the exclusion confidence level of the tested scenario

A SUSY-inspired search

CMS α_T search at 7 TeV

Definition of α_T

di-jet event with less energetic jet j_2 $\alpha_T = \frac{p_T(j_2)}{M_{jj}} = \frac{p_T(j_2)}{\sqrt{H_T^2 - M_T^2}}$ where $\mathcal{H}_T = |\sum_{i=1}^{N_{jet}} \vec{p}_T|$

• QCD events have typically $\alpha_T < 0.5$: powerful to discriminate SM background

effective in events with large MET (typical in SUSY)!

A SUSY-inspired search

CMS α_T search at 7 TeV

Definition of α_T

di-jet event with less energetic jet j_2 $\alpha_T = \frac{p_T(j_2)}{M_{jj}} = \frac{p_T(j_2)}{\sqrt{H_T^2 - M_T^2}}$ where $\mathcal{H}_T = |\sum_{i=1}^{N_{jet}} \vec{p}_T|$

• QCD events have typically $\alpha_T < 0.5$: powerful to discriminate SM background

effective in events with large MET (typical in SUSY)!

Results in the toy model: more effective with large splitting!

Outline

A problem with Dark Matter in 5D

Fixed points of the 5D orbifold

The points 0 and πR are transformed into themselves

KK-parity must be imposed by hand on the physically different fixed points The Dark Matter candidate is not "natural" in 5D

A problem with Dark Matter in 5D

A problem with Dark Matter in 5D

Only in the Real Projective Plane there are 0-mode (i.e. SM) chiral fermions

Particle content (lightest tiers)

Odd tier (1,0)+(0,1): $M = M_{KK}$

Fermions: Q_1 , L_1 , ν_1 Gauge Scalars: W_1 , Z_1 , G_1 , A_1 Even tier (2,0)+(0,2): $M = 2M_{KK}$

 $\begin{array}{c} \text{Fermions: } Q_2, L_2, \nu_2 \\ \text{Gauge Vectors: } W_2^{\mu}, Z_2^{\mu}, G_2^{\mu}, A_2^{\mu} \\ \text{Higgses: } H_2, S_2^0, S_2^{\pm} \end{array}$

Mass splittings in the same tier \lesssim 100 GeV for Mkk \lesssim 800 GeV

Particle content (lightest tiers)

Odd tier (1,0)+(0,1): $M = M_{KK}$

Fermions: Q_1 , L_1 , ν_1 Gauge Scalars: W_1 , Z_1 , G_1 , A_1 Even tier (2,0)+(0,2): $M = 2M_{KK}$

 $\begin{array}{c} {\sf Fermions:} \ Q_2, \ L_2, \ \nu_2 \\ {\sf Gauge \ Vectors:} \ W_2^{\mu}, \ Z_2^{\mu}, \ G_2^{\mu}, \ A_2^{\mu} \\ {\sf Higgses:} \ H_2, \ S_2^0, \ S_2^{\pm} \end{array}$

Mass splittings in the same tier $\lesssim 100~\text{GeV}$ for Mkk $\lesssim 800~\text{GeV}$

Bounds on M_{KK} from DM relic aboundance

The allowed region is between 700 GeV and 1 TeV

(feature due to localized $H_{(2,0)}$ mass term)

Particle content (lightest tiers)

Odd tier (1,0)+(0,1): $M = M_{KK}$

Fermions: Q_1 , L_1 , ν_1 Gauge Scalars: W_1 , Z_1 , G_1 , A_1 Even tier (2,0)+(0,2): $M = 2M_{KK}$

 $\begin{array}{c} \text{Fermions: } Q_2, L_2, \nu_2 \\ \text{Gauge Vectors: } W_2^{\mu}, Z_2^{\mu}, G_2^{\mu}, A_2^{\mu} \\ \text{Higgses: } H_2, S_2^0, S_2^{\pm} \end{array}$

Mass splittings in the same tier $\lesssim 100~\text{GeV}$ for Mkk $\lesssim 800~\text{GeV}$

Examples of production processes

Odd tier

Particle content (lightest tiers)

Odd tier (1,0)+(0,1): $M = M_{KK}$

Fermions: Q_1 , L_1 , ν_1 Gauge Scalars: W_1 , Z_1 , G_1 , A_1 Even tier (2,0)+(0,2): $M = 2M_{KK}$

 $\begin{array}{c} \text{Fermions: } Q_{2}, L_{2}, \nu_{2} \\ \text{Gauge Vectors: } W_{2}^{\mu}, Z_{2}^{\mu}, G_{2}^{\mu}, A_{2}^{\mu} \\ \text{Higgses: } H_{2}, S_{2}^{0}, S_{2}^{\pm} \end{array}$

Mass splittings in the same tier $\lesssim 100~\text{GeV}$ for Mkk $\lesssim 800~\text{GeV}$

Examples of production processes

Odd tier

The final state contains MET, jets and leptons: more searches can be tested

Searches with jets, MET and leptons

Single lepton

"Lepton projection method" with variable L_P , which measures the component of the lepton p_T that is parallel to that of the reconstructed W it originates from. In the SM typically $L_P > 0.3$

signal region: $L_P < 0.15$ $S_T^{lep} = p_T(l) + \not{E}_T = \begin{cases} 250 - 350GeV \\ 350 - 450GeV \\ 450 - \infty GeV \end{cases}$

Opposite-sign dileptons

Region 1	Region 2	Region 3	Region 4	
$H_T > 300 GeV$	$H_T > 600 GeV$	$H_T > 600 GeV$	$125 < H_T < 300 GeV$	
$\not \!$	$\not \! E_T > 200 GeV$	$\not \! \! E_T > 275 GeV$	$ \not\!$	

Same-sign dileptons

Region 1	Region 2	Region 3	Region 4	Region 5
$H_T > 80 GeV$	$H_T > 200 GeV$	$H_T > 450 GeV$	$H_T > 450 GeV$	$H_T > 450 GeV$
$E_T > 120 GeV$	$E_T > 120 GeV$	$E_T > 50 GeV$	$E_T > 120 GeV$	$E_T > 0 GeV$

Exclusion CLs for UED in the RPP

	$m_{KK} = 400 \text{ GeV}$		$m_{KK} = 600 \text{ GeV}$		$m_{KK} = 700 \text{ GeV}$	
	$\epsilon_{\mathrm{total}}$	CL	$\epsilon_{\mathrm{total}}$	CL	$\epsilon_{\mathrm{total}}$	CL
α_T	1.4%	100%	1.1%	99%	1.0%	64%
L_p	0.19%	100%	0.11%	83%	0.08%	38%
ÓS	0.03%	87%	0.02%	3%	0.02%	1%
SS	0.01%	100%	< 0.01%	20%	< 0.01%	5%
Combination		100%		99.9%		72%

Combining the 7 TeV SUSY searches it is possible to put a 2σ bound on $M_{KK}=\min(1/R_5,1/R_6)$ between 600 and 700 GeV

Exclusion CLs for UED in the RPP

	$m_{KK} = 400 \text{ GeV}$		$m_{KK} = 600 \text{ GeV}$		$m_{KK} = 700 \text{ GeV}$	
	$\epsilon_{\mathrm{total}}$	CL	$\epsilon_{\mathrm{total}}$	CL	$\epsilon_{\mathrm{total}}$	CL
α_T	1.4%	100%	1.1%	99%	1.0%	64%
L_p	0.19%	100%	0.11%	83%	0.08%	38%
ÓS	0.03%	87%	0.02%	3%	0.02%	1%
SS	0.01%	100%	< 0.01%	20%	< 0.01%	5%
Combination		100%		99.9%		72%

Combining the 7 TeV SUSY searches it is possible to put a 2σ bound on $M_{KK}=\min(1/R_5,1/R_6)$ between 600 and 700 GeV

Still

- Searches with leptons in final state have a subdominant contribution, but they are more effective for heavier tiers (more leptons in final state from chain decays)
- The dominant α_T search has anyway a low efficiency (hard cuts kill a large amount of the signal)

Exclusion CLs for UED in the RPP

	$m_{KK} = 400 \text{ GeV}$		$m_{KK} = 600 \text{ GeV}$		$m_{KK} = 700 \text{ GeV}$	
	$\epsilon_{\mathrm{total}}$	CL	$\epsilon_{\mathrm{total}}$	CL	$\epsilon_{\mathrm{total}}$	CL
α_T	1.4%	100%	1.1%	99%	1.0%	64%
L_p	0.19%	100%	0.11%	83%	0.08%	38%
ÓS	0.03%	87%	0.02%	3%	0.02%	1%
SS	0.01%	100%	< 0.01%	20%	< 0.01%	5%
Combination		100%		99.9%		72%

Combining the 7 TeV SUSY searches it is possible to put a 2σ bound on $M_{KK}=\min(1/R_5,1/R_6)$ between 600 and 700 GeV

Still

- Searches with leptons in final state have a subdominant contribution, but they are more effective for heavier tiers (more leptons in final state from chain decays)
- The dominant *α_T* search has anyway a low efficiency (hard cuts kill a large amount of the signal)

SUSY searches with \not{E}_T already provide strong bounds on non-SUSY models with DM candidates and compressed spectra, but there is still room for improvement!

Possible directions for improvement Example with α_T

The α_T cuts remove large clusters of UED events

Modifying kinematical cuts to account for compressed spectra may improve the efficiency for different scenarios, increasing the range of application of a given search!

Conclusions and outlook

- Dark Matter candidates in Universal Extra Dimensions have different properties with respect to SUSY candidates
 - \rightarrow Small mass gap between DM candidate and other states: compressed spectra
 - \rightarrow **Spin** of the DM candidate (vector or scalar)
- Phenomenology at collider exhibits peculiar features, but searches with *E*_T are mostly tuned for SUSY
- The potentiality of SUSY-tuned searches to constrain UED models is high and there is still room for improvement!