Light Dark Matter in the MSSM

based on arXiv:1308.3735, G.Belanger, G.DLR, B.Dumont, R.M.Godbole, S.Kraml, S.Kulkarni

Guillaume Drieu La Rochelle drieu@ipnl.in2p3.fr

IPN, Lyon, France

October 22, 2013

Outline

Which kind of dark matter?

Our DM target:

- ► Relic density : Ωh^2 -compliant \rightarrow a WIMP candidate
- ▶ Direct detection : Respect bounds on σ_{SI} → a light WIMP

Our playground : the MSSM

- Why SUSY? Originally motivated by naturalness and gauge coupling unification
- ► It also provides WIMPs
- ► Its DM sector can be constrained by complementary tests (colliders, flavour, ...)

► choose DM \equiv MSSM neutralino $\tilde{\chi}_1^0 = \begin{cases} f(\tilde{B}, \tilde{W}_3, \tilde{H}_i) \\ \updownarrow & \updownarrow \\ M_1, M_2, \mu \end{cases}$

- ► choose DM \equiv MSSM neutralino $\tilde{\chi}_1^0 = \begin{pmatrix} f(\tilde{B}, \tilde{W}_3, \tilde{H}_i) \\ \updownarrow & \updownarrow \\ M_1, M_2, \mu \end{pmatrix}$
- ▶ make it light \rightarrow only \tilde{B} can go below 100 GeV
 - ▶ Indeed $\tilde{W}_3 \leftrightarrow \tilde{W}^+$ and $\tilde{H}_i \leftrightarrow \tilde{H}^+$ constrained at LEP.

- ► choose DM \equiv MSSM neutralino $\tilde{\chi}_1^0 = \begin{pmatrix} f(\tilde{B}, \tilde{W}_3, \tilde{H}_i) \\ \updownarrow & \updownarrow \\ M_1, M_2, \mu \end{pmatrix}$
- ▶ make it light \rightarrow only \tilde{B} can go below 100 GeV
 - ▶ Indeed $\tilde{W}_3 \leftrightarrow \tilde{W}^+$ and $\tilde{H}_i \leftrightarrow \tilde{H}^+$ constrained at LEP.
- ▶ get Ωh^2 right : $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \bar{f} f$ usually too small for \tilde{B} .
 - ▶ It proceed either through t-channel of \tilde{f} or s-channel of H, Z
 - if $\tilde{\chi}_1^0 = f(\tilde{B}, \tilde{H})$

- ▶ get Ωh^2 right : $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \bar{f} f$ usually too small for \tilde{B} .
 - ▶ It proceed either through *t*-channel of \tilde{f} or *s*-channel of H, Z
 - if $\tilde{\chi}_1^0 = f(\tilde{B}, \tilde{H})$
 - ▶ Can be enhanced with low \tilde{f} (LEP bound) or $m_{\tilde{\chi}_1^0} \sim \left(\frac{M_Z}{2}, \frac{M_H}{2}\right)$
- ► Consequences ?

▶ If $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \bar{f} f$, what about signals in indirect detection?

▶ If $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \bar{f} f$, what about signals in indirect detection?

- ▶ If $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \bar{f} f$, what about signals in indirect detection?
- $\tilde{\chi}^0_1$ partly $\tilde{H} \rightarrow \tilde{\chi}^0_2, \tilde{\chi}^-_1$ light (100 200 GeV)
 - ▶ what about **LHC**?
- ▶ If \tilde{f} is light, what about **LHC**?

- lacksquare If $ilde{\chi}^0_1 ilde{\chi}^0_1 o ar{f} f$, what
- $\tilde{\chi}_1^0$ partly $\tilde{H} \rightarrow \tilde{\chi}_2^0$,
 - ▶ what about **LHC**
- ▶ If \tilde{f} is light, what at

- ▶ If $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \bar{f} f$, what about signals in indirect detection?
- $\tilde{\chi}_1^0$ partly $\tilde{H} \rightarrow \tilde{\chi}_2^0, \tilde{\chi}_1^-$ light (100 200 GeV)
 - ▶ what about **LHC**?
- ▶ If \tilde{f} is light, what about **LHC**?
- $ightharpoonup m_{ ilde{\chi}_1^0} < M_H/2 \Longrightarrow H o ilde{\chi}_1^0 ilde{\chi}_1^0$ is open
 - what about Higgs couplings at LHC?

▶ If $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \bar{f} f$, what about signals in indirect detection?

► wh

▶ If \tilde{f} is li

 $ightharpoonup m_{\widetilde{\chi}_1^0} < 1$

- ▶ If $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \bar{f} f$, what about signals in indirect detection?
- $\tilde{\chi}_1^0$ partly $\tilde{H} \rightarrow \tilde{\chi}_2^0, \tilde{\chi}_1^-$ light (100 200 GeV)
 - ▶ what about **LHC**?
- ▶ If \tilde{f} is light, what about **LHC**?
- $ightharpoonup m_{\tilde{\chi}_1^0} < M_H/2 \Longrightarrow H \to \tilde{\chi}_1^0 \tilde{\chi}_1^0$ is open
 - what about Higgs couplings at LHC?
- ▶ Does flavour connect some of the previous observables?

Observables: the Higgs couplings

- ▶ Two constraints on Br ($h \rightarrow$ invisible):
 - ▶ Direct : Search for $pp \rightarrow ZH$ looking only at Z.
 - ▶ Indirect : Search for deviations in the visible channels.

Observables: the Higgs couplings

- ▶ Two constraints on Br ($h \rightarrow \text{invisible}$):
 - ▶ Direct : Search for $pp \rightarrow ZH$ looking only at Z.
 - ▶ Indirect : Search for deviations in the visible channels.
- Indirect approach far more constraining
 - \rightarrow Br ($h \rightarrow$ invisible) < 0.2

Observables: the Higgs couplings

- ▶ Two constraints on Br ($h \rightarrow \text{invisible}$):
 - ▶ Direct : Search for $pp \rightarrow ZH$ looking only at Z.
 - ▶ Indirect : Search for deviations in the visible channels.
- Indirect approach far more constraining

$$\rightarrow$$
 Br ($h \rightarrow$ invisible) < 0.2

- ▶ **Interplay** with Ωh^2 through Higgsino fraction f_H
 - ▶ $f_H \nearrow \Rightarrow Br (h \rightarrow invisible) \nearrow$
 - $f_H \nearrow \Rightarrow \Omega h^2 \searrow$

Observables: the Higgs couplings (II)

Other couplings can be affected:

- $ightharpoonup \kappa_{V,b,t}$ through tree-level mixings (decoupled if $M_{A^0}\gg M_Z$)
 - ▶ Decoupling $\equiv M_{A^0} \gg M_Z$, then $\kappa_V \sim 1$
 - $\kappa_{b,\tau}$ can be marginally enhanced at high tan β
- $\kappa_g \approx 1$ since the stops are not light enough.

Observables: the Higgs couplings (II)

Other

▶ K.

- ▶ κ
- \blacktriangleright κ_{γ} can be generated by staus.
- \blacktriangleright κ_{γ} depend crucially on the stau mixing angle.
- ▶ Interplay with Ωh^2 , since the $\tilde{\tau}_R$ couples more to \tilde{B} $\Omega h^2 \Leftrightarrow \kappa_{\gamma}$ via $\tilde{\tau}$ mixing

Observables: Sleptons @ LHC

- $ightharpoonup \tilde{e}, \tilde{\mu}$ tested though direct double production :
 - ► Direct production dominated by Z channel $\rightarrow \sigma_{pp \rightarrow \tilde{e}^+ \tilde{e}^-}$ only depends on $m_{\tilde{e}}$
 - Assuming $\tilde{e} \to e \tilde{\chi}^0_1$, bounds depend on $m_{\tilde{\chi}^0_1}$.

Observables: Sleptons @ LHC

- $ightharpoonup \tilde{e}, \tilde{\mu}$ tested though direct double production :
 - ► Direct production dominated by Z channel $\rightarrow \sigma_{pp \rightarrow \tilde{e}^+ \tilde{e}^-}$ only depends on $m_{\tilde{e}}$
 - Assuming $\tilde{e} o e \tilde{\chi}^0_1$, bounds depend on $m_{\tilde{\chi}^0_1}$.

▶ If $m_{\tilde{\chi}_1^0} > 20$ GeV, the region $m_{\tilde{e}} \in [100, 120]$ GeV untouched

- Most sensitive searches are :
 - $\tilde{\chi}_1^0$ direct production (final state : mono-jet/photon)

- Most sensitive searches are :
 - $\tilde{\chi}_1^0$ direct production (final state : mono-jet/photon)
 - $ightharpoonup ilde{\chi}_2^0, ilde{\chi}_1^-$ direct production (final state : trileptons)
- ▶ Focus on $\tilde{\chi}_2^0, \tilde{\chi}_1^-$
 - Its sensitivity depends on $m_{\tilde{\chi}_2^0} \approx m_{\tilde{\chi}_1^-}$, $m_{\tilde{\chi}_1^0}$ and intermediate state $:\tilde{\tau},\tilde{l}$.

- Most sensitive searches are :
 - $\tilde{\chi}_1^0$ direct production (final state : mono-jet/photon)
 - $ightharpoonup ilde{\chi}_2^0, ilde{\chi}_1^-$ direct production (final state : trileptons)
- ▶ Focus on $\tilde{\chi}_2^0, \tilde{\chi}_1^-$
 - Its sensitivity depends on $m_{\tilde{\chi}_2^0} \approx m_{\tilde{\chi}_1^-}$, $m_{\tilde{\chi}_1^0}$ and intermediate state $:\tilde{\tau}, \tilde{I}$.
 - ► Reach as σ^{excluded} depends non-trivially on $(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_1^-}, m_{\tilde{\tau}})$ → 3-d space.
 - Reach also change if the intermediate slepton is purely stau, or also smuon/selectron.

- Most sensitive searches are :
 - $\tilde{\chi}_1^0$ direct production (final state : mono-jet/photon)
 - $\tilde{\chi}_2^0, \tilde{\chi}_1^-$ direct production (final state : trileptons)
- ▶ Focus on $\tilde{\chi}_2^0, \tilde{\chi}_1^-$
 - Its sensitivity depends on $m_{\tilde{\chi}_2^0} \approx m_{\tilde{\chi}_1^-}$, $m_{\tilde{\chi}_1^0}$ and intermediate state $:\tilde{\tau},\tilde{I}$.
 - ► Reach as σ^{excluded} depends non-trivially on $(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_1^-}, m_{\tilde{\tau}})$ → 3-d space.
 - Reach also change if the intermediate slepton is purely stau, or also smuon/selectron.
- ▶ Not so obvious to extrapolate results (2-d) to the full space
 - ► See the SModelS approach (talk from Suchita Kulkarni).
 - ► Go for a full simulation at detector level (arXiv:1307.4119 Calibbi et al.)

Observables: Flavour Physics

- ► Seems irrelevant : usually constrain only H⁺
 - ▶ But A_0 , H^+ can be easily decoupled.
- ▶ However, there is an interplay with Ωh^2 :
 - $\tilde{\chi}^0_1$ partially $\tilde{H}
 ightharpoonup \tilde{\chi}^0_1 \tilde{\chi}^0_1
 ightharpoonup \bar{\ell} \ell$ enhanced at high $\tan \beta$
- ▶ With both flavour and relic density \Rightarrow lower bound on M_{A^0}
 - lacktriangle all the more that $\tilde{\chi}^0_1$ is light

Detailed: the parameter space

- ► Basis : the pMSSM
- Fixed structure :
 - First and second generation parameters identified
 - ▶ Heavy \tilde{q} (2 TeV), except \tilde{t}_1 (0.75 TeV), $A_q = 0$ (except A_t)
- Parameters of Interest :
 - ▶ Higgs sector : $\tan \beta \in [1, 50]$ and $M_{A^0} \in [0.1, 1]$ TeV
 - $ilde{\chi}^0_1$ sector : $M_1 \in [10,70]$ GeV and $M_2, \mu \in [0.1,1]$ TeV
 - $\tilde{\ell}$ sector : $m_{\tilde{\tau}} \in [85, 500]$ allowing all mixings.
 - lacktriangledown $m_{ ilde{e}_2}=500$ GeV, $m_{ ilde{e}_1}=500$ GeV or $m_{ ilde{e}_1}\in[100,200]$ GeV
 - Flat scans focusing on interesting region ($\tilde{\tau}_1$ mostly right-handed, ...)

Detailed: the constraints

- LEP tests
 - ▶ Z invisible width → constrain $Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0$
 - \blacktriangleright bounds on charged particles : $m_{\tilde{\chi}_1^-} > 100$ GeV, $m_{\tilde{\tau}} > 85$ -90 GeV
 - ▶ bound on $\tilde{\chi}_i^0 \tilde{\chi}_i^0$ production

Detailed: the constraints

- LEP tests
 - ► Z invisible width \longrightarrow constrain $Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0$
 - \blacktriangleright bounds on charged particles : $m_{{ ilde \chi}_1^-} > 100$ GeV, $m_{ ilde au} > 85$ -90 GeV
 - ▶ bound on $\tilde{\chi}_i^0 \tilde{\chi}_i^0$ production
- ▶ Constraints on $(M_{A^0}, \tan \beta)$
 - Search for $\Phi \to \bar{\tau} \tau$ at LHC (CMS-PAS-HIG-12-050)
 - ► Flavour tests : Br $(B \to X_s \gamma)$ from HFAG and Br $(B_s \to \bar{\mu}\mu)$ from LHCb and CMS (CMS-PAS-BPH-13-007,LHCb-CONF-2013-012)

Detailed: the constraints

- LEP tests
 - ▶ Z invisible width → constrain $Z \to \tilde{\chi}_1^0 \tilde{\chi}_1^0$
 - \blacktriangleright bounds on charged particles : $m_{{ ilde \chi}_1^-} > 100$ GeV, $m_{ ilde au} > 85$ -90 GeV
 - ▶ bound on $\tilde{\chi}_i^0 \tilde{\chi}_i^0$ production
- ▶ Constraints on $(M_{A^0}, \tan \beta)$
 - Search for $\Phi \to \bar{\tau} \tau$ at LHC (CMS-PAS-HIG-12-050)
 - ▶ Flavour tests : Br $(B \to X_s \gamma)$ from HFAG and Br $(B_s \to \bar{\mu}\mu)$ from LHCb and CMS (CMS-PAS-BPH-13-007,LHCb-CONF-2013-012)
- Dark Matter
 - ▶ Ωh^2 constrained by Planck+WMAP : either exact range or upper bound.
 - In SUSY, Ωh² uncertainty dominated radiative corrections*→ 10% range
 - ▶ Direct detection : $\xi \sigma_{SI}$ constrained by XENON 100.
 - Higgs Physics (more later)
 - ► LHC searches (more later)

Relic density and mass spectrum

- ► Red(Orange) all viable points (+ Ωh^2 exact range) Light/Dark Blue : Rejected by $\Phi \to \bar{\tau}\tau/DM$ constraints.
- ▶ $m_{\tilde{\chi}_1^0}$ can go as low as 15 GeV
- ▶ What about σ_{SI} in non-resonant case?

Relic density and mass spectrum

- ► Red(Orange) all viable points (+ Ωh^2 exact range) Light/Dark Blue : Rejected by $\Phi \to \bar{\tau}\tau/DM$ constraints.
- ▶ $m_{\tilde{\chi}_1^0}$ can go as low as 15 GeV
- ▶ What about σ_{SI} in non-resonant case?

Relic density and mass spectrum (II)

▶ It is indeed the $\tilde{\tau}$ that drives $m_{\tilde{\chi}_1^0}$ to low values.

Relic density and mass spectrum (II)

- ▶ It is indeed the $\tilde{\tau}$ that drives $m_{\tilde{\chi}^0_1}$ to low values.
- ▶ Yellow $m_{{\widetilde \chi}_1^0} < 25$, Dark Green $25 < m_{{\widetilde \chi}_1^0} < 35$, Green $35 < m_{{\widetilde \chi}_1^0} < 50$, Gray $50 < m_{{\widetilde \chi}_1^0}$ (GeV)
- \blacktriangleright Light μ is also needed
 - ▶ Increases the Higgsino fraction f_H .
 - ► Together with $\tan \beta \rightarrow \Omega h^2$ not too high

Relation: Higgs Physics

▶ What deviations can we expect?

- ▶ Two Distinct regions at low $m_{\tilde{\chi}_1^0}$:
 - ▶ Maximally mixed staus \rightarrow $\kappa_{\gamma} \in [1.1, 1.25]$
 - ▶ Unmixed staus \rightarrow $\kappa_{\gamma} \approx 1$
- ► Important effect on Br $(h \rightarrow \text{invisible})$ **→** high f_H needed for Ωh^2
- ▶ With increased accuracy, the lightest $\tilde{\chi}_1^0$ could be excluded.

Relations : LHC searches $\tilde{\chi}_2^0 \tilde{\chi}_1^-$

• $m_{\widetilde{\chi}_1^0} < 25$ and low M_2 are excluded

Relations : LHC searches $\tilde{\chi}_2^0 \tilde{\chi}_1^-$

- $m_{\tilde{\chi}_1^0} < 25$ and low M_2 are excluded
- ▶ For $m_{\tilde{\chi}_1^0} < 35$ GeV, all points below $M_2 < 350$ are unsafe.
- ▶ Here a more dedicate analysis could tell what survives
- lacktriangle At higher $m_{{ ilde \chi}_1^0}$, it can be evaded with $m_{ ilde au} > m_{{ ilde \chi}_1^-}$

Perspective for Indirect Detection

► Requiring Ωh^2 small enough → possible signals in $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \to \bar{f} f$

- ▶ Fermi-LAT limit from dwarf spheroidal galaxies close to predictions for $m_{\tilde{\chi}_1^0} < 35$ GeV.
- Other constraints (Subhalo searches)
 - ► Subject to large astrophysical uncertainties (halo,...)

Summary

- Light dark matter can be achieved in the MSSM with a bino (and partly higgsino) neutralino.
- ► The different mechanisms that ensure a correct relic density are linked to other experiments
 - ▶ Z resonance \rightarrow $f_H \neq 0 \rightarrow$ Higgs invisible width
 - stau exchange \longrightarrow small $\mu \longrightarrow {\rm LHC}$ searches for $\tilde{\chi}_2^0, \tilde{\chi}_1^-$
 - ▶ slepton exchange → direct search at LHC
- ▶ In particular, indirect detection could be a main probe!
- Accurate Higgs couplings and search for $\tilde{\chi}_2^0 \tilde{\chi}_1^-$ are LHC best chances.

Backhup

Higgs signal strength

