Dark Matter in the NMSSM

U. Ellwanger, LPT Orsay

- On the Nature of Susy Dark Matter
- Light Dark Matter in the NMSSM

On the Nature of Susy Dark Matter

Assuming GUT relations among gaugino masses M_1 and $M_3 = M_{gluino}$ (Grand Unification is one of the "goodies" of Supersymmetry!):

$$M_1$$
 (bino) $\sim rac{1}{6} M_3$

LHC: $M_{gluino} \gtrsim 1.5 \text{ TeV} \rightarrow M_1 \gtrsim 250 \text{ GeV}$

Higgsinos: Masses given by $\sim \mu$ MSSM: $\mu H_u H_d$ in the superpotential NMSSM: $\lambda S H_u H_d + \frac{\kappa}{3} S^3$ in the superpotential $\rightarrow \mu_{\text{eff}} = \lambda \langle S \rangle$

Small $\mu_{(eff)}$ preferred by low fine-tuning:

$$M_Z^2 \simeq rac{2(m_{H_d}^2 - \tan^2 \beta \ m_{H_u}^2)}{\tan^2 \beta - 1} - 2\mu_{(\text{eff})}^2$$

→ absence of cancellations if $|\mu_{(eff)}| \approx M_Z$ → $|\mu_{(eff)}| < M_1$, higgsino-like dark matter(?) But: higgsino-like dark matter faces problems:

- Too small relic density (Z-exchange in the s-channel)
- Too large direct detection cross section (unless > 90% "pure")
- → Should one conclude that $|\mu_{(eff)}| \gtrsim M_1$, hence No Dark Matter below 250 GeV (if M_1 "unified" with M_3)?

True in the MSSM, **NOT** in the NMSSM:

The lightest neutralino can be an admixture of the singlino χ_S and higgsinos, if the singlino mass term

$$M_{\chi_S} = 2 \frac{\kappa}{\lambda} \mu_{\text{eff}}$$

is small enough

Note: the singlino and the CP-even/CP-odd singlet Higgs masses M_{H_S}/M_{A_S} satisfy an approximate sum rule (for $\langle S \rangle \gg M_Z$):

$$M_{\chi_S}^2 \sim M_{H_S}^2 + \frac{1}{3}M_{A_S}^2$$

Not very exact due to omitted terms, rad. corrs. and mixing effects, still:

A light singlino implies light singlet-like CP-even and CP-odd Higgs bosons

Viable? Consider constraints from

- WMAP/Planck on the relic density,
- LEP on light Higgs bosons, on $\chi_1^0 + \chi_2^0$ production, invis. Z-width \lesssim 2 MeV,
- XENON100 on the direct detection cross section,
- Parameters consistent with a SM-like Higgs boson near 125 GeV, incl. SM-like signal rates

And recent constraints from

— invisible/undetected decays of the SM-like H_{125} Higgs boson (if $M_{\chi_1^0} \lesssim 60$ GeV),

— searches for charginos/neutralinos at the LHC (relevant for $M_{\chi_1^0} \lesssim 60$ GeV)

Note: $M_{\chi^0_1} \sim$ 63 GeV constitutes a "barrier":

- $M_{\chi^0_1}\sim$ 63 \pm 2 GeV is impossible: too small relic density from $H^{\chi^0_1}_{\rm 125}\text{-exchange}$ in the s-channel
- constraints from H_{125} -decays apply only for $M_{\chi_1^0} \lesssim 60$ GeV
- constraints from searches for charginos/neutralinos at the LHC are relevant only to $M_{\chi_1^0} \lesssim 60~{\rm GeV}$

Singlino-higgsino-like LSP with $M_{\chi_1^0} \lesssim 60$ GeV viable at all? (Constraints from indirect DM detection and ATLAS searches for $Z/W + E_T^{\text{miss}}$ apply to $M_{\chi_1^0} \lesssim 10$ GeV, not considered here)

Constraints from invisible/undetected H_{125} decays:

Invisible: $H_{125} \rightarrow \chi_1^0 \chi_1^0$; (weak) constraints from ZH-production:

 $Z^* \to H_{125} + Z \to \chi_1^0 \chi_1^0 + e^+ e^-, \mu^+ \mu^-: \qquad BR(H_{125} \to \chi_1^0 \chi_1^0) \lesssim 75\%$

Undetected: $H_{125} \rightarrow \chi_1^0 \chi_1^0$ or pair of light CP-even or CP-odd Higgs states H_1 , A_1 decaying to 4*b*-quarks

- \rightarrow additional contributions to the total width $\Gamma_{Tot}(H_{125})$
- \rightarrow reduction of the observed BRs of H_{125} into $\gamma\gamma$, ZZ, WW, $b\overline{b}$
- → $BR(H_{125} \rightarrow \text{undetect.}) \leq 30\%$ (Belanger et al., 1302.5694) (unless the coupling of H_{125} to ZZ/WW - relevant for VBF - is enhanced; impossible if H_{125} =mixture of SU(2) doublets and singlets)
- → Strong bounds on $H_{125} \rightarrow \chi_1^0 \chi_1^0$, $H_1 H_1$, $A_1 A_1$ for $M_{\chi_1^0}$, M_{H_1} , M_{A_1} below 60 GeV; large couplings (large λ) ruled out

Also: Upper bounds on the SI χ_1^0 -proton cross section mediated by H_{125} , stronger than the ones from XENON100 for $M_{\chi_1^0} \lesssim 50$ GeV:

However: In the NMSSM, the SI χ_1^0 -proton cross section can be mediated dominantly by a light mostly singlet-like CP-even Higgs boson (Vasquez et al., 1009.4380) inspite of its small couplings to quarks, since $\sigma_{\chi p}^{SI} \sim M_H^{-4}$!

 \rightarrow XENON100 bounds remain relevant here

Constraints from chargino/neutralino searches at the LHC:

Most relevant:

$$W^* \to \chi_1^+ + \chi_2^0 \to (W_{\to lept} + \chi_1^0) + (Z_{\to 2lept} + \chi_1^0)$$

$$\rightarrow$$
 3 leptons (e^{\pm} or μ^{\pm}) + E_T^{miss}

Often interpreted for χ_1^+ , χ_2^0 wino-like (degenerated), χ_1^0 bino-like, no $\chi_2^0 \rightarrow \chi_1^0$ +Higgs decays ("simplified model")

From ATLAS-CONF-2013-035:

 \rightarrow $M_{\chi_1^\pm}\,{\lesssim}\,320$ GeV for $M_{\chi_1^0}\,{\lesssim}\,100$ GeV

Applying the same bounds to the singlino-higgsino scenario in the NMSSM (U.E., 1309.1665; simplified: assuming no $\chi^0_{2,3} \rightarrow \chi^0_1$ +Higgs decays):

Blue hatched: excluded by LEP; red curve: excluded by ATLAS $\rightarrow M_{\chi_1^\pm} \lesssim 240$ GeV for $M_{\chi_1^0} \lesssim 60$ GeV

 \rightarrow Alleviation of the previous bounds since the W-higgsino² coupling is smaller than the W-wino² coupling (Clebsch Gordan coeff.), and $\chi^0_{2,3}$ have some singlino component

The *BR*s for $\chi^0_{2,3} \rightarrow \chi^0_1$ +Higgs decays (assumed to be absent here) depend strongly on the various mixing angles/parameters;

Allowing for $\chi^0_{2,3} \rightarrow \chi^0_1$ +Higgs decays with parameters consistent with Dark Matter relic density, XENON100 bounds, a 125 GeV SM-like Higgs: The *BR* for the dominant $\chi^0_{2,3} \rightarrow \chi^0_1 + H$ decay is

 $BR(\chi_2^0 \to \chi_1^0 + H_{125}) \sim 35\%$

 \rightarrow Further alleviation of the previous bounds:

$$M_{\chi_1^\pm} \sim \mu_{\rm eff} \gtrsim 170~{\rm GeV}$$
 for $M_{\chi_1^0} \lesssim 40~{\rm GeV}$

Still non-trivial!

Scanning the NMSSM Parameter Space, implementing all constraints on Dark Matter (relic density, XENON100, LEP) and a 125 GeV Higgs boson (mass, signal rates from Belanger et al., 1306.2941): Viable points! BUT: "MSSM-like" H_{125} mass (large tan β , small λ , large A_{top})

The χ_1^0 singlet component $N_{1,5}$ as function of $M_{\chi_1^0}$:

ightarrow 0.91 \lesssim $N_{1,5}$ \lesssim 1.00, mostly singlet-like

Note: In order for the relic density not to be too small due to s-channel resonances

- $N_{1,5}$ must be close to 1 for $M_{\chi_1^0}$ close to $\frac{125.7}{2} \sim 63$ GeV such that χ_1^0 decouples from H_{125} , but $N_{1,5} < 1$ for $M_{\chi_1^0}$ away from 63 GeV such that Ωh^2 is in agreement with WMAP/Planck
- $N_{1,5}$ must be close to 1 for $M_{\chi_1^0}$ close to $\frac{1}{2}M_Z \sim 45$ GeV such that χ_1^0 decouples from Z, but $N_{1,5} < 1$ for $M_{\chi_1^0}$ away from 45 GeV such that Ωh^2 is in agreement with WMAP/Planck

— And for $M_{\chi_1^0} \lesssim 30$ GeV?

The lightest CP-odd Higgs mass M_{A_1} as function of $M_{\chi_1^0}$:

→ For $M_{\chi_1^0} \lesssim 30$ GeV we have typically $M_{A_1} \sim 2 M_{\chi_1^0}$, → χ_1^0 annihilation through A_1 in the s-channel → 3 different χ_1^0 annihilation channels depending on $M_{\chi_1^0}$!

The spin-independent χ_1^0 -proton cross section as function of $M_{\chi_1^0}$:

Note: much larger cross sections at low $M_{\chi^0_1} \lesssim 15~{\rm GeV}~({\rm DAMA},~{\rm CoGENT})$ are not possible

XENON1T (about 2 orders of magnitude better) will test most – but still not all – of the parameter space

The invisible $BR(H_{125} \rightarrow \chi_1^0 \chi_1^0)$ as function of the undetected $BR(H_{125} \rightarrow \chi_1^0 \chi_1^0, H_1 H_1, A_1 A_1)$:

 \rightarrow Both $H_{125} \rightarrow \chi_1^0 \chi_1^0$ and $H_{125} \rightarrow H_1 H_1$, $A_1 A_1$ can contribute sizeably to the undetected BR

Conclusions:

- A singlino-higgsino-LSP scenario in the NMSSM (large M_1 , low μ_{eff}) is well motivated; very distinct from the MSSM
- Viable even for $M_{\chi_1^0} \lesssim 60$ GeV in spite of new recent constraints from the LHC: H_{125} signal rates, searches for neutralinos/charginos

Future tests:

- XENON1T, of course;
- Neutralino/chargino searches at the LHC; need careful interpretation!
- Stronger constraints on $BR(H_{125})_{undetect.}$ from lower bounds on H_{125} signal rates into $\gamma\gamma$ etc.?