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Motivation: Cosmology

• There are various discrepancies between N-body 

simulations of collisionless cold DM and 

astrophysical observations on galactic scales:

– Cusp-vs-core problem

– Too-big-to-fail problem

– Missing-satellite problem

• DM self-interactions may solve these problems.

Spergel & Steinhard: astro-ph/9909386
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Self-interacting DM

• To be observable on astrophysical scales, self-

interaction cross sections have to be large, typically

σ/mχ ~ 1 cm2/g ~ 2 barns/GeV

• The typical cross section of a WIMP is 15 orders of 

magnitude smaller!

• Evidence for DM self-interactions on astrophysical 

scales would rule out many popular models for DM, 

such as supersymmetric WIMPs and axions.
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Motivation: Particle physics

• Large self-interactions are (more) natural in models 
with a complex dark sector, e.g.

– Strongly interacting DM

– Mirror DM

– Atomic DM

• We can potentially study the dark sector even if DM 
has highly suppressed couplings to Standard Model 
particles.
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Self-interactions: Constraints

• Various astrophysical observations give constraints 

on the DM self-interaction cross section:

– Core density in clusters

– Core density in dwarfs 

– Halo ellipticity

– Subhalo evaporation rate

• These constraints seem to be very strong, implying 
σ/mχ < 0.1 cm2/g, which is too small to give 

observable effects on small scales.
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Yoshida et al.: astro-ph/0006134
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Self-interactions: New constraints

• However, recent numerical simulations indicate that 

the conventional bounds on DM self-interactions 

have been overstated.

• Velocity-independent DM self-interactions with      
σ/mχ ~ 1 cm2/g may still be viable.

• We need to find new systems and develop new 

techniques to constrain or measure such 

interactions.
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Colliding clusters

• In the absence of DM self-interactions, we expect 

the following picture:

• For simplicity: Neglect tidal forces and dynamical 

friction, which may induce an asymmetric tail in the 

DM distribution.
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Colliding clusters

• This simple picture agrees well with observations:
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Bullet Cluster: Clowe et al.: astro-ph/0608407

Abell 520: Mahdavi et al.: 0706.3048

Musket Ball Cluster: Dawson et al.: 1110.4391

DM halo

Gas



Colliding clusters

• We conclude that DM behaves differently from gas.

• However, before concluding that DM is actually 

collisionless, we need to understand how self-

interactions would modify the picture:

– Does the DM halo slow down?

• Observables: Velocity, offset

– Does the DM halo evaporate?

• Observables: M/L ratio, dark core

– Is the DM halo deformed?

• Observables: Ellipticity, offset
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Observational constraints

• Observations of the Bullet Cluster constrain the rate 

of halo evaporation and halo deceleration due to 

DM self-interactions.

– σ/mχ < 1 cm2/g (analytically)

– σ/mχ < 0.7 cm2/g (numerically)

• Given existing bounds on DM self-interactions, can 

we hope for an observable separation?

• The answer to this question depends on the particle 

physics nature of DM self-interactions!
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Particle physics perspective
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• Since the relative velocity v0 between the two sub-

clusters is large, we can approximate

and (in the sub-cluster rest-frame).

• The collision of two DM particles leads to the 

evaporation of a DM particle if and

.



Particle physics perspective

• We find .

• Evaporation occurs if . 

• Such collisions are referred to as expulsive.
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Evaporation rate

• In this approximation, the evaporation rate is

• Defining the fraction of expulsive collisions

• The halo fraction lost to evaporation is
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DM surface density of main cluster

Total self-interaction cross section



Example: Bullet Cluster

• For vesc = 1900 km/s and v0 = 4500 km/s, we find

• Consequently, immediate evaporation occurs for

• For isotropic scattering, we find
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Rare and frequent interactions

• Bullet Cluster: 

• For isotropic scattering, the fraction of expulsive 

collisions is large (  f ~ 1). Consequently, scattering 

must be rare in order for the sub-cluster to survive:

• An alternative way to satisfy this constraint is to 

have frequent self-interactions ( ) but 

a small fraction of expulsive collisions (          ).
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Frequent interactions: Models

• In order to have , the overwhelming majority 

of collisions must have small momentum transfer, 

(i.e. small scattering angles).

• Consequently, we are interested in cross-sections, 
which diverge in the limit θcms → 0 and θcms → π. 

• This requirement is for example satisfied by long-

range interactions leading to Rutherford scattering

(caveat: velocity suppression).
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Rare and frequent interactions

• For the evaporation rate, rare self-interactions with   
f ~ 1 and frequent self-interactions with f ≪ 1 are 

largely indistinguishable.

• What about other observables (such as the 

separation between DM halos and galaxies)?

• Because of the strong directionality of the problem, 

we expect that the angular distribution of the 

scattered DM particles influences the magnitude 

and the time-evolution of the separation.
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Frequent interactions: Effects

• Frequent DM self-interactions lead to the 

deceleration of DM halos moving through a larger 

system:

where the momentum transfer cross section is

• This deceleration can be described in terms of an 

effective drag force
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m = -1 for long-range interactions

m = 1 for velocity-independent 

interactions



Frequent interactions: Predictions

• In a cluster collision, the DM halo will retain its shape, 

since the drag force affects all DM particles equally.

• In the decelerating frame of the DM halo, galaxies 

will experience a fictitious accelerating force.

• The resulting tilt in the effective potential will shift the 

distribution of galaxies relative to the DM halo.

• Moreover, some galaxies can escape and will end 

up travelling ahead of the DM halo.
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Just after the collision At late times



Numerical simulations

• Simplified numerical simulation: Trace the motion of 

a set of test particles (DM and galaxies) in a time-

dependent gravitational potential.
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1. The peaks of the two 

distributions always remain 

coincident.

2. The distribution of galaxies 

develops a tail in the forward 

direction.

3. The majority of the DM 

particles and galaxies remain 

bound to the same 

gravitational potential.

FrontBack



DM-galaxy separation

• In contrast to the conventional expectation, the 

separation is harder to observe in more evolved systems.

Felix Kahlhoefer 24 October 2013, IPNL Lyon 22

• Once the drag force 

decreases, bound galaxies 
return to their original position.

• Escaping galaxies are no 

longer considered part of the 

system, once they reach large 

distances.

• Consequently, the separation 

is largest shortly after the 

collision and then decreases.

Time



Rare self-interactions

• Rare self-interactions mean that in a cluster collision 

the probability for multiple scattering is negligible.

• Consequently, a typical DM particle will fall in one 

of three categories:

a) The DM particle scatters once with high momentum 

transfer and escape from the sub-cluster.

b) The DM particle scatters once with low momentum 

transfer and remains bound to the sub-cluster.

c) The DM particle does not scatter at all.
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Numerical simulations
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a)
b)

c)

We can confirm our expectations 
by extending our numerical 

simulation to include scattering 

between individual DM particles.

Just after the collision

At late times



DM-galaxy separation
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• At large distances, escaping particles are no longer 

associated to the sub-cluster.

• Particles that have scattered but remained bound 

only contribute to the separation for a short time.

Numerically Analytically



Observational bounds

• For both rare and frequent self-interactions, the peak of 

the DM distribution remains coincident with the peak of 

the distribution of galaxies. 

• The effect of self-interactions is never large enough to 

completely separate DM halo and galaxies.

• The predicted separation is small (10 – 40 kpc), below 

current bounds for the Bullet Cluster (Δz < 50 kpc).

• There are promising new strategies:

1. Statistical analysis of a large number of mergers

(or infalling sub-halos).

2. Measurement of the shape of DM halos and the 

corresponding galaxy distributions.
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Harvey et al.: 1310.1731



Conclusions

• DM self-interactions can be frequent only if the fraction 
of expulsive collisions f is small. In this case DM self-
interactions can be described by an effective drag 
force.

• When f is large, however, DM self-interactions must be 
rare and an effective description of collective effects is 
not possible.

• These two classes of DM self-interactions give 
qualitatively different predictions for the DM-galaxy 
separation in cluster collisions. 

• In both cases, the expected separation between DM 
halo and galaxies is largest shortly after the collision but 
still below current observational bounds. 
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Considering different systems

• The main cluster in System B is much larger than the sub-

cluster, so escaping particles are more likely to be associated 

with the main cluster.

• The sub-cluster in System B is more tightly bound and thus 
particles that have scattered but remained bound will quickly 
reach their maximum distance and return.
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System A:
Abell 520

System B:
Bullet Cluster



Velocity dependent interactions

• A possible solution could be velocity-dependent 

self-interactions, which would be enhanced in low-

velocity systems such as dwarf satellites:

• For such interactions, no relevant constraints arise 

from high-velocity systems such as galaxy clusters.
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DM sub-populations

a) The DM particle scatters once with high momentum 

transfer and escape from the sub-cluster.

– These particle will typically travel in the direction 

opposite to the direction of motion of the sub-cluster, 

leading to a DM tail in the backward direction.

– This tail will exert a gravitational pull on the DM halo 

and the galaxies, slowing both of them down in 

exactly the same way.

– Ultimately, these particles will end up far away from 

their original system, no longer contributing to the 

observable separation.
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DM sub-populations

b) The DM particle scatter once with low momentum 

transfer and remain bound to the sub-cluster.

– These particles will typically have elliptical orbits, 

which they retain for a very long time.

– Before completing half an orbit, they will preferentially 

be found towards the back of the system.

c) The DM particle does not scatter at all.

– These particles will behave exactly like galaxies.
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Just after the collision At late times



DM-galaxy separation

• Here we will focus on the potential separation 

between DM halos and galaxies caused by self-

interactions.

• The separation Δz is defined as the distance 

between the respective centroids of the DM halo 

and the distribution of galaxies.

• Given existing bounds on DM self-interactions, can 

we expect an observable separation?
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