

Photon isolation Data and MC comparison

The LAPP Team

1

Background decomposition @ high mass

Isolation & Tight efficiencies in MC

How does the isolation efficiency look like in data?

1) Signal isolation extracted from data: Inclusive distributions

R

Signal isolation in data – Step 1

- Extract bkg shape from L'L' (\overline{TT}) data sample
- $DR(\gamma 1, \gamma 2) > 0.4$. No TrackIso cut
- Correct for signal leakage in L'L' (TT) region using MC
- Extract normalization and efficiencies from 2Dx2D sidebands

Signal isolation in data – Step 2

- Signal from tight-tight sample
- Bkg from L'L normalized to signal shape in [15-25] GeV window

subleading

leading

Signal isolation in data – Step 2'

- Signal from tight-tight sample
- Bkg from L'L' normalized in [-10;6] GeV to $W^{\gamma j}_{TITI} + W^{j\gamma}_{TITI} + W^{jj}_{TITI}$

subleading

leading

Data/MC comparison: all photons Normalized within [0;5] GeV window

Data/MC comparison: Leading Photon Normalized within [0;5] GeV window

Data/MC comparison: Subleading Photon

Normalized within [0;5] GeV window

2) Signal Isolation extracted from data: $vs M_{\gamma\gamma}$

16 mass bins:

10 GeV bins in [100-200] [200-220][220-250][250-300] [300-400][400-600][600-1300]

Background substraction – Leading γ

Background substraction – Subleading γ

Signal Shape extraction – Leading γ

SHERPA MC (blue) superimposed with data shape (red)

Signal Shape extraction – Subleading γ

SHERPA MC (blue) superimposed with data shape (red)

Isolation efficiency in data vs SHERPA

