

A scintillating fiber tracker for the LHCb upgrade

Fred Blanc (EPFL)

Clermont-Ferrand 23/05/2013

Proposed tracker

- 3 tracking stations downstream of the LHCb magnet
- 250 µm scintillating fibers
- readout with multi-channel Silicon photo-multipliers (SiPM)

LHC and the LHCb experiment

The CERN accelerator complex

The CERN accelerator complex

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF-3 Clic Test Facility CNLS Cern Neutrinos to Gran Sesso ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator O-76F Neutrons Time Of Flight

Clermont-Ferrand seminar, 23/05/2013

The LHC accelerator at CERN

- The LHC is installed in the old 27km circular LEP tunnel
- Accelerates protons to a maximum energy of 7TeV
 - 3TeV in 2011; 4TeV in 2012; expect 6.5-7TeV in 2015
- Interaction rate: (up to) $40MHz \Rightarrow 25ns$ bunch crossings
- Revolution frequency: 11kHz
- Main operation since 2010
- Currently stopped to bring the beams to nominal performance by 2015

LHC: beam energy

- 7 TeV protons ⇒ 2×7 TeV center of mass energy [1TeV = 10¹² eV with 1 eV = 1.6 × 10⁻¹⁹ Joules] ⇒ kinetic energy of a 1mg mosquito at 1.5m/s
- 10¹¹ protons per bunch
- ~1400 bunches per beam in 2012 data taking period
- Total beam energy
 - $E_{beam} = 1400 \times 10^{11} \times 7 \times 10^{12} \text{ eV}$ $\approx 10^{27} \text{ eV} = 1.6 \times 10^8 \text{ J}$
 - equivalent to the kinetic energy of a 40-ton truck at 300km/h $E_{kin} = 1/2mv^2 \implies v = (2E_{kin}/m)^{1/2} =$ $(3.2 \times 10^8 / 40000)^{1/2} = 90m/s = 324km/h$

Les particules du "modèle standard"

LEPTONS

Composants de la matière	Électron Un des composants de l'atome, avec le nucléon.	Neutrino-Électron Particule sans charge électrique et avec une très petite masse. Des milliards de ces particules traversent votre corps à chaque seconde.	
	Muon Très proche de l'électron, mais plus lourd ; il a une durée de vie de 2 millionièmes de secondes.	Neutrino-Mu Créé en même temps que les muons quand certaines particules se désintègrent.	
	Tau Encore plus lourd ; il est légèrement instable. Il a été découvert en 1975.	Neutrino-Tau Découvert en 2000.	

Les particules du "modèle standard"

QUARKS

Composants de la matière	Up Sa charge électrique est + 2/3 <i>e</i> ; les protons en contiennent deux, les neutrons en contiennent un.	Down Il a une charge électrique de -1/3 <i>e</i> ; les protons en contiennent un, les neutrons en contiennent deux.
	Charmé Un proche du « Up », mais plus lourd. Découvert en 1974.	Étrange Un proche du « Down », mais plus lourd.
	Top Encore plus lourd ; découvert en 1995.	Beauté Encore plus lourd ; mesurer les quarks beauté est un test important de la théorie électro-faible.

Les particules du "modèle standard"

QUARKS

Composants de la matière	Up Sa charge électrique est + 2/3 <i>e</i> ; les protons en contiennent deux, les neutrons en contiennent un.	Down Il a une charge électrique de -1/3 <i>e</i> ; les protons en contiennent un, les neutrons en contiennent deux.	
	Charmé Un proche du « Up », mais plus lourd. Découvert en 1974.	Étrange Un proche du « Down », mais plus lourd.	
	Top Encore plus lourd ; découvert en 1995.	Beauté Encore plus lourd ; mesurer les quarks beauté est un test important de la théorie électro-faible.	

LHCb: the physics goals

- Main LHC experiments (ATLAS & CMS)
 - search for new heavy particles (M $\approx 100-1000$ GeV/c²)
 - candidate Higgs particle observed at 126GeV/c^2 \Rightarrow confirmation of the standard model of particle physics
- LHCb
 - study the matter-antimatter asymmetry and rare processes
 - precision measurements in heavy-flavor systems
 - particles containing heavy quarks (*beauty* or *charm*)
 - new physics (i.e. heavy particles) can enter loops and modify the behaviour of the standard model predictions

LHCb: the physics goals

- Main LHC experiments (ATLAS & CMS)
 - search for new heavy particles (M $\approx 100-1000 \text{GeV/c}^2$)
 - candidate Higgs particle observed at 126GeV/c^2 \Rightarrow confirmation of the standard model of particle physics
- LHCb
 - study the matter-antimatter asymmetry and rare processes
 - precision measurements in heavy-flavor systems
 - particles containing heavy quarks (*beauty* or *charm*)
 - new physics (i.e. heavy particles) can enter loops and modify the behaviour of the standard model predictions

Comment détecte-t-on les particules

	Trajectographe électromagnétique	Calorimètre électromagnétique	Calorimètre hadronique	Détecteur de muons
Photons Électrons ou positons Muons				
Pions ou protons Neutrons				

LHCb: the detector

- In proton-proton collisions, the B mesons are predominantly produced the in direction of the beams
 ⇒ build the detector along the beam line (forward spectrometer)
- Short B meson lifetime
 ⇒ high precision vertex detector near interaction point
- Kinematics reconstruction of the processes
 ⇒ tracking system with bending magnet
- Multiple types of detected charged particles $(\pi^{\pm}, K^{\pm}, p, e^{\pm}, \mu^{\pm})$ \Rightarrow particle identification (Cherenkov + calorimeters)
- Detection of neutral particles (photons)
 ⇒ electromagnetic calorimeter
- Muon (µ[±]) identification
 ⇒ muon detectors placed after the calorimeters

LHCb detector

Clermont-Ferrand seminar, 23/05/2013

...zoom on the tracker

LHCb Event Display

LHCb: selected physics results

LHCb: the need for an upgrade

- Adding 2fb⁻¹ of data every year is significant in the first years
 - statistical uncertainties are proportional to the square root of the integrated luminosity $\sim (L)^{1/2}$
- Expect ~7fb⁻¹ by 2016; 2017 will add 30% \Rightarrow only ~13% improvement on the statistics
- A significant increase is necessary to justify the effort of operating the detector

 \Rightarrow upgrade of the LHCb detector

- LHCb upgrade plans:
 - replace several sub-detectors
 - change all electronics to allow 40MHz readout
 - install new detector during the 2018 LHC shutdown

LHCb tracker upgrade

LHCb detector upgrade

- LHCb upgrade: replace several detectors, and R/O electronics
- Discuss here the replacement of the tracker, downstream of the magnet

Tracking detector requirements

- High hit detection efficiency ($\geq 98-99\%$)
- Spatial hit resolution at the level of $60-100\mu m$
- Minimize material in the acceptance
 - to limit the effects of multiple scattering and energy loss
- Readout electronics to operate at 40MHz
- Rate of reconstructed noise clusters $< \sim 2MHz / 128$ -channels
- The above requirements must be fulfilled over the full lifetime of the experiment (up to 50fb⁻¹)

Comments on the hit resolution

- Hit resolution is driven by multiple scattering
 - each station (TT, IT, OT): $x/X0\approx3-4\%$ \Rightarrow multiple scattering angle θ_{ms} (cf. PDG)

$$\theta_{\rm ms} = \frac{13.6 \,{\rm MeV}}{\beta cp} \sqrt{x/X_0} \left[1 + 0.038 \ln \left(x/X_0\right)\right]$$

-
$$p \approx 20 \text{GeV/c}$$
; $\beta \approx 1 \implies \theta_{\text{ms}} \approx 0.12 \text{mrad}$

- 0.12mrad×0.6m = 72µm
 ⇒ uncertainty due to multiple scattering from a tracking station to the next

 \Rightarrow do not need better than $\approx 60 \mu m$ measurement accuracy

- effect across the magnet: 0.12mrad×5.5m = 660µm

⇒necessity to minimize the material in the acceptance!

Options for the LHCb tracker upgrade

• Two options are being considered:

Silicon strips + Straw tubes

Options for the LHCb tracker upgrade

• Two options are being considered:

Options for the LHCb tracker upgrade

• Two options are being considered:

Scintillating fiber (SciFi) is a new technology in LHCb
 ⇒ can a SciFi tracker fullfil the performance requirements?
 ⇒ will the SciFi technology perform as required after the
 radiation dose received in the LHCb upgrade (50fb⁻¹)?

Main SciFi detector features

- 250µm diameter scintillating fibers
 - arranged in multiple layers for sufficient light collection
- Cover the acceptance with 2.5m long fibers
 - mirror at the center (beam pipe height)
 - light detected outside the acceptance
 ⇒ minimize "inactive" material in the acceptance
 - vertical (x) and stereo $(u\&v) \Rightarrow 12$ layers
- readout with multi-channel Silicon photo-multipliers (SiPM)

• Readout: 40MHz front-end electronics

The SciFi tracking in numbers

• 12 layers of $5 \times 6m^2$

 $\Rightarrow 360 \text{m}^2$

• 250µm diameter fibers arranged in 5 layers

 \Rightarrow 7200km

- readout at top and bottom of the detector stations
 - \Rightarrow 144m instrumented with 250µm channels

SciFi technology challenges

- Development needed for the LHCb SciFi tracker
 - fibers and SiPM radiation hardness studies
 - fiber module construction
 - how to produce 2.5m long fiber mats
 - how to obtain the necessary mechanical precision and rigidity
 - cooling for the SiPMs down to -50°C
 - what cooling system
 - how to control the mechanical stress
 - readout at 40MHz

SciFi R&D

LHCb upgrade: radiation environment

Spectra close to the beam pipe at Fiberplate in front of IT1

<u>Careful</u>: Lethargy means multiplying fluence with Energy bin values in order to get more detail out of high energy regions in a logarithmic binning. Integration below the curve is no longer possible!

Scintillating Fibers

- Baseline fiber: Kuraray SCSF-78MJ
- The fibers have two roles:
 - 1. act as scintillator
 - 2.8ns scintillation decay time
 - light yield: ~1600 photons/mm/MIP×5.35% capture \Rightarrow 10's of photons
 - scintillating dye is expected to be radiation hard
 - 2. transport the light to the SiPM
 - 5.3ns/m propagation time
 - attenuation length is an issue (radiation hardness)
- Alternative fiber: 3HF
 - expected to be more radiation hard
 - ...but slower decay time and lower light yield

Fiber emission spectrum after irradiation

Attenuation length of irradiated fibers

• Irradiated fibers at the CERN PS with 24GeV/c protons

Clermont-Ferra

Scintillating fiber radiation hardness

- Damage due to radiations found to increase logarithmically with the dose
- Projected relative light yield loss: (without mirror & without timing cut)

Light detection time

Light yield loss: with mirror and timing cut

Attenuation versus y position (x = 1 m means almost no radiation effect)

-x = 0 -x = 1 m -x = 0 no mirror -x = 1 m no mirror

• Effect of mirror and timing cut is to reduce light yield spread for all hits along the 2.5m long fiber

Detector performance from simulation

- Tracking on simulated data has been used to evaluate the performance of the SciFi tracker:
 - similar performance to current LHCb, even with ×5 luminosity!
 - faster thanks to single technology
- Estimated level of acceptable noise clusters: $\sim 2MHz$ / SiPM
- Fibers must be straight over their full length

Fiber mat production

- Lay down fibers on a 96cm diameter cylinder
 - grooves give fibers 280µm pitch
 - each layer is glued to the previous layer (total = 5 layers)
- Fiber mat is cut and taken off the wheel before the glue is dry

Fiber quality is tested (diameter, cracks) before use

Fiber mats

• Fiber mat prototype

- Next steps:
 - improve fiber mat quality
 - R&D for cutting 2.5m long mats (sides and ends)
 - casting into a precise shape

Silicon Photo-Multipliers (SiPM)

- $0.25 \times 1.3 \text{ mm}^2$ channels of 4×20 pixels
- pixel size = $55 \mu m$
- 128 (2×64) channels grouped in a an 32mm array

- Two manufacturers: Hamamatsu and Ketek
- Development in progress

Signal cluster detection with SiPM

- after pulse
- integratio
- clustering
- A simulatio

$$f_C = f\left(f_P(\Delta V, T, Dose), A(th_{seed}, th_{neigh.}, th_{sum}), p_{x-talk}(\Delta V), p_{after}(\Delta V), \int^{\Delta t}\right)$$

Simulation of the dark noise spectrum

- Irradiation 8fb⁻¹
- ≻ T=-40°C
- Slow shaping

- Irradiation 8fb⁻¹
- ≻ T=-20°C
- Slow shaping

- Irradiation 50fb⁻¹
- ≻ T=-44°C
- Slow shaping

Good predictive power \Rightarrow can be used to extrapolate to LHCb upgrade conditions

Simulation of the cluster noise rate

- Irradiation 8fb⁻¹
- ≻ T=-20°C , -40°C
- Slow and fast shaping

- Irradiation 25fb⁻¹
- ≻ T=-40°C
- Fast shaping

- ➢ Irradiation 25fb⁻¹
- ≻ T=-40°C
- ➢ Fast shaping

SiPM radiation hardness

- Maximize the hit detection efficiency, while keeping the cluster noise at an acceptable level (< ~2MHz / 128-channels)
- Noise controlled by:
 - shielding, cooling, pixel-pixel cross-talk, integration time
- Results:
 - noise can be kept below 2MHz
 - photon detection efficiency: ^{0.91} OK for the KETEK SiPM, ^{0.9} and too low for Hamamatsu SiPM

Simulation of the hit detection efficiency

• On-going R&D is expected to improve significantly the performance of the Hamamatsu detector

Detector modules

- Plan to build 16 SiPM wide modules (~52cm)
- Single or double fiber layers

- Development of a service box to hold
 - the SiPMs
 - the cooling system for the SiPMs
 - the readout electronics
 - the mechanical support

SiPM cooling (-50°C)

• Considering several cooling systems for SiPMs

4. cooling through the PCB

• Thermal analysis of the various options in progress

Front-end electronics

- 40MHz readout electronics
 - development in Clermont-Ferrand and Barcelona to meet the SciFi detector requirements
 - considering various options

- Choice between the options in September 2013
- take into account SiPM response, occupancy distribution, etc...
- Short term testing with existing 40MHz *beetle* chip (LHCb)

Detector layout and integration (in progress)

Clermont-Ferrand seminar, 23/05/2013

Prototype engineering drawings for a double fiber layer design

Conclusion (and next steps)

- A scintillating fiber detector readout with SiPMs is being developed for the upgrade of the LHCb experiment
- It is the first time this technology would be used at this size and in the high radiation environment of the LHC
- The next steps towards a Technical Design Report by the end of 2013 are in preparation:
 - 1. continuation of the SciFi and SiPM R&D
 - 2. construction of a demonstrator detector module with all functionalities
 - challenging engineering R&D
 (e.g. fiber mat production, integration of the cooling, ...)
 - 3. design of the front-end electronics
 - multiple solutions are being considered
 - 4. design of the global detector layout
 - 5. planning until installation and cost evaluation