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Introduction

Statistics plays a vital role in science, it is the way that we:
» quantify our knowledge and uncertainty

» communicate results of experiments
Big questions:
» testing theories, measure or exclude parameters, etc.
» how do we make decisions
» how do we get the most out of our data
» how do we incorporate uncertainties

Statistics is a very big field, and it is not possible to cover everything in 3
hours. In these talks | will try to:

- explain some fundamental ideas & prove a few things
- enrich what you already know
- exXpose you to some new ideas

| will try to go slowly, because if you are not following the logic, then it is
not very interesting.

- Please feel free to ask questions and interrupt at any time

Kyle Cranmer (NYU/LAPP) Statistical Techniques for Particle Physics, May 21-22,2008 LAPP



Further Reading

By physicists, for physicists
G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998.

R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical
Sciences, John Wiley, 1989;

F. James, Statistical Methods in Experimental Physics, 2nd ed., World
Scientific, 2006; W.T.Eadie et al., North-Holland, 1971;

S.Brandt, Statistical and Computational Methods in Data Analysis,
Springer, New York, 1998;

L.Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986.

My favorite statistics book by a statistician:

Stuart, Ord, Arnold. “Kendall's Advanced Theory of Statistics” Vol. 2A Classical Inference &
the Linear Model.
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Other lectures

Fred James’ lectures
http://preprints.cern.ch/cgi-bin/setlink?base=AT &categ=Academic_Training&id=AT00000799

http://www.desy.de/~acatrain/
Glen Cowan’s lectures

http://www.pp.rhul.ac.uk/~cowan/stat_cern.html

Louis Lyons
http://indico.cern.ch/conferenceDisplay.py?confld=a063350

Bob Cousins gave a CMS lecture, may give it more publicly

The PhyStat conference series at PhyStat.org

PhYSTat Phystat Physics Statistics Code Repository

An open, loosely moderated repository for code, tools, and documents relevant to statistics in physics applications. Search and download access is universal; package
submission is loosely moderated for suitability.

Using the Site

= Lists of packages

= Search for a package

= Submit a Package

= Comment on a package (not yet available)

About the Repository

= Repository Policies and Procdures

= The Phystat Repository Steering Committee

= Comment on the repository site or policies

PHYSTAT Conference Links

= PHYSTAT @07 (CERN) @05 (Oxford) €303 (SLAC) @02 (Durham)
= Phystat Workshops: 308 (Caltech) €306 (BIRS/Banff) €300 (Fermilab) 00 (CERN)

= More Conferences and Workshops ...
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Lecture 1
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Axioms of Probability

These Axioms are a mathematical

starting point for probability and
statistics

1.probability for every element, E, is
non-negative P(E)>0 VECF

2.probability for the entire space of
possibilities is 1 P(@)=1.

3.if elements E; are disjoint, probability
is additive P(EiUE,U--) =} P(E).

Kolmogorov
Consequences: axioms (1933)

P(AU B) = P(A)+ P(B) — P(AN B)
P(Q\ E)=1- P(E)
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Different definitions of Probability lapp) %

Frequentist by
Q L 7
o e

» defined as limit of long term frequency
» probability of rolling a 3 := limit of (# rolls with 3 / # trials)
- hot very practical, sometimes ensemble doesn’t exist
- eg. probability Higgs mass is 120 GeV, weather tomorrow
» basis of Monte Carlo methods

» compatible with interpretation of probability in Quantum Mechanics
(though some argue this point). Probability to measure spin
projected on x-axis if spin is aligned along +z [(— | T>\2 _

Subjective Bayesian
- Probability is a degree of belief (personal, subjective)
- can be made more rigorous based on betting odds
- most people’s subjective probabilities are not coherent and do
not obey laws of probability

http://plato.stanford.edu/archives/sum2003/entries/probability-interpret/#3.1
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Bayes’ Theorem

Bayes’ theorem relates the conditional and
marginal probabilities of events A & B
P(B|A) P(A)

P(B)

P(A) is the prior probability or marginal probability of A. It is "prior" in the sense
that it does not take into account any information about B.

P(AlIB) is the conditional probability of A, given B. It is also called the posterior
probability because it is derived from or depends upon the specified value of B.
P(BIA) is the conditional probability of B given A. .
P(B) is the prior or marginal probability of B, and acts as a normalizing constant

P(A|B) =

Derivation from conditional probabilities

To derive the theorem, we start from the definition of conditional probability. The probability of event A given event B is
P(ANB)

P(B)
Equivalently, the probability of event B given event A is
P(AN B)

P(A)
Rearranging and combining these two equations, we find

P(A|B) P(B) = P(AN B) = P(B|A) P(A).

This lemma is sometimes called the product rule for probabilities. Dividing both sides by P(B), providing that it is non-zero, we obtain Bayes' theorem:
P(ANB) P(B|A)P(A)

P(B)  P(B)
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... in pictures (from Bob Cousins) lapp) %

P, Conditional P, and Derivation of Bayes’ Theorem
in Pictures
‘ P(B) =

P(A) = ——_

Whole space

¢
‘B P(AIB) = " P(BIA) =

9
-

P(A) x P(BIA) =

O
;e
@ ¢
X =
N e
Bob Cousins, CMS, 2008 = P(BIA) = P(AI B) X P(B) / P(A)
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An example of Bayes’ theorem

A b-tagging algorithm gives a curve like this

| Background rejection versus Signal efficiency |
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0.8 0.9
Signal efficiency

One wants to decide where to cut and to optimize analysis
- For some point on the curve you have:

- P(btag| b-jet), i.e., efficiency for tagging b’s

- P(btag| not a b-jet), i.e., efficiency for background
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An example of Bayes’ theorem lapp) %

Now that you know:
» P(btag| b-jet), i.e., efficiency for tagging b’s
» P(btag| not a b-jet), i.e., efficiency for background

Question: Given a selection of jets tagged as b-jets, what
fraction of them are b-jets?

- |.e., what is P(b-jet | btag) ?
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An example of Bayes’ theorem lapp) %

Now that you know:
» P(btag| b-jet), i.e., efficiency for tagging b’s
» P(btag| not a b-jet), i.e., efficiency for background

Question: Given a selection of jets tagged as b-jets, what
fraction of them are b-jets?

- |.e., what is P(b-jet | btag) ?

Answer: Cannot be determined from the given information!
 Need to know P(b-jet): fraction of all jets that are b-jets.
- Then Bayes’ Theorem inverts the conditionality:

* P(b-jet | btag) «P(btag|b-jet) P(b-jet)
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An example of Bayes’ theorem lapp) %
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Note, this use of Bayes’ theorem is fine for Frequentist
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An different example of Bayes’ theorem lapp) (C'ﬁ

An analysis is developed to search for the Higgs boson
- background expectation is 0.1 events
- you know P(N | no Higgs)
- signal expectation is 10 events
- you know P(N | Higgs )

Question: one observes 8 events, what is P(Higgs | N=8) ?

Answer: Cannot be determined from the given information!
 Need in addition: P(Higgs)
- no ensemble! no frequentist notion of P(Higgs)

- prior based on degree-of-belief would work, but it is
subjective. This is why some people object to Bayesian
statistics for particle physics
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Bayesian vs. Frequentist

In short, Frequentist are always restricted to statements
related to

» P(Data | Theory)
» the data is considered random

» each point in the “Theory” space is treated independently
- (no notion of distance or probability in the “Theory” space

Bayesians can address questions like:

» P(Theory | Data) « P(Data | Theory) P(Theory)

- intuitively what we want to know

» but it requires a prior on the Theory
- [short discussion subjective vs. empirical Bayes goes here]

Later | will discuss the “Likelihood Principle” and Likelihood-based
analysis: it’s a third approach to statistical inference
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“Bayesians address the question everyone is
Interested in, by using assumptions no-one
believes”

“Frequentists use impeccable logic to deal
with an issue of no interest to anyone”

- P. G. Hamer
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Some personal history

TrioMAS . CRANMER , |
» MARITIR .

Archbishop of Canterbury Thomas
Cranmer (born: 1489, executed:
1556) author of the “Book of
Common Prayer”

Two centuries later (when this Book
had become an official prayer book of
the Church of England) Thomas Bayes
was a non-conformist minister
(Presbyterian) who refused to use
Cranmer’s book
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a little on Information Theory
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Information Theory lapp) (C'//

How much information in this message? 1000110101001011
N ————

16 entries
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Information Theory

How much information in this message? 1000110101001011
N ————

16 entries

What about this one ,01010101010101

16 entries
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Information Theory

How much information in this message? 1000110101001011
N ————

16 entries

What about this one ,01010101010101

16 entries

and this one? abcdabedabedabed
———

16 entries
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Information Theory

1000110101001011
N————  —

16 entries

0.5
Pr(X =1)
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Information Theory lapp) ¥

1 el B | ) i i .
¥ s« B8] How much information in this message?

1000110101001011
N————  —

16 entries

0.5
Pr(X =1)
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¥ s« B8] How much information in this message?
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Information Theory lapp) ¥

1 el B | ) i i .
¥ s« B8] How much information in this message?

1000110101001011
N————  —

16 entries

- 16 bits? (bit is unit when log is base 2)

0.5
Pr(X =1)
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Information Theory

How much information in this message?

1000110101001011
N————  —

16 entries

- 16 bits? (bit is unit when log is base 2)
- it depends on probabilities of 0,1

S = —kp Y_p;iInp;

0.5
Pr(X =1)
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Information Theory

How much information in this message?

1000110101001011
N————  —

16 entries

- 16 bits? (bit is unit when log is base 2)
- it depends on probabilities of 0,1

In 1870’s Boltzman and Gibbs defined entropy:
S = —kp ) pilnp,

0.5
Pr(X =1)
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Information Theory lapp) %

How much information in this message?

1000110101001011
N————  —

16 entries

- 16 bits? (bit is unit when log is base 2)
- it depends on probabilities of 0,1

In 1870’s Boltzman and Gibbs defined entropy:
S = —ATB Zp, lllp.,-

In 1948, Calude Shannon publishes uses entropy
as a centerpiece of his “Mathematical Theory of

Communication” eg. information theory

— Y plx)logp(x

reX

0.5
Pr(X =1)
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Information Theory lapp) %

How much information in this message?

1000110101001011
N————  —

16 entries

- 16 bits? (bit is unit when log is base 2)
- it depends on probabilities of 0,1

In 1870’s Boltzman and Gibbs defined entropy:
S = —ATB Zp, lllp.,-

In 1948, Calude Shannon publishes uses entropy
as a centerpiece of his “Mathematical Theory of

Communication” eg. information theory

— Y plx)logp(x

reX

px—=1) - information maximized when p; all equal
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Probability Density Functions lapp) %

When dealing with continuous random variables, need to
introduce the notion of a Probability Density Function
(PDF... not parton distribution function)

P(x € |z, x + dz]) = f(x)dx

Note, f(x)is NOT a probability

Equivalent of second axiom...
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Cumulative Density Functions
Often useful to use a cumulative distribution:

»in 1-dimension: / f(z')dz' = F(z)
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0.6

0.4

1_IIII
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Cumulative Density Functions
Often useful to use a cumulative distribution:

»in 1-dimension: / f(z')dz' = F(z)

1 __I T T T
0.8 [
0.6

0.4

» alternatively, define density
as partial of cumulative:

fla) = 22
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Cumulative Density Functions
Often useful to use a cumulative distribution:

»in 1-dimension: / f(z')dz' = F(z)

u_ 1=
0.8
0.6

0.4

0.2

O-3

» alternatively, define density » similar to relationship of total
as partial of cumulative: and differential cross section:

fla) = 2o f(B) = > o
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Cumulative Density Functions
Often useful to use a cumulative distribution:

»in 1-dimension: / f(z')dz' = F(z)

u_ 1=
0.8
0.6

0.4

0.2
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» alternatively, define density » similar to relationship of total
as partial of cumulative: and differential cross section:

OF (x 1 O%c
fla) = 22 FEm) = S g
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Impact of continuous variables & PDFs  lapp,

}((//

Bayes’ theorem basically untouched

fxy(z,y)  frwX=2)fx(z)  fryX =2)fx(z)

Ix@lY =y) = === = fy(y) 2 WX =€) fx(§) dE

» need to be careful that marginal PDFs are well behaved

Information theory

» the obvious generalization
Wl =~ [ f(x)logf(z)dz, (x)

» is not the continuous limit of the discrete case

hlf] = lim [H® + logA] = —/_x f(z)log f(z)dx,

» it’s not invariant to re-parameterizations
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Parametric vs. Non-Parametric PDFs  lapp) ‘C,”

Many familiar pdfs are considered parametric
» eg. a Gaussian G(x|u, o) is parametrized by (u, o)
» defines a family of functions
» allows one to make inference about parameters
» some examples have very complicated parametric pdfs
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Parametric vs. Non-Parametric PDFs  lapp) (C'//
Many familiar pdfs are considered parametric

» eg. a Gaussian G(x|u, o) is parametrized by (u, o)

» defines a family of functions

» allows one to make inference about parameters

» some examples have very complicated parametric pdfs
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Parametric vs. Non-Parametric PDFs l&“@ “T’
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Parametric vs. Non-Parametric PDFs '5@ (C'ﬁ

Alternatively, one can consider non-parametric pdfs
From empirical data, one has empirical PDF

1 N
emp — N 25(1‘ — ajz)
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Parametric vs. Non-Parametric PDFs  lapp) ‘C,”

Alternatively, one can consider non-parametric pdfs
From empirical data, one has empirical PDF

1 N
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c o o o O
N W ~ 9)) (0}
00||||||||||||||||||||||||||||||||||||

o
—

, ©

><w||III|IIII|IIII|IIII|IIII|IIII|IIII|

[ \ ‘| ‘II |“ ‘I |‘ |H| |Hlm‘_|.”l ‘I I
-1 0 1

Kyle Cranmer (NYU/LAPP) Statistical Techniques for Particle Physics, May 21-22,2008 LAPP




Parametric vs. Non-Parametric PDFs '5@ (C'ﬁ

Alternatively, one can consider non-parametric pdfs
or, one can make a histogram

w.,S ]‘ w.,S
hist(T) = N th ’
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Parametric vs. Non-Parametric PDFs
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Parametric vs. Non-Parametric PDFs '5@ (C'ﬁ

Alternatively, one can consider non-parametric pdfs
but they depend on bin width and starting position

w.,S ]‘ w.,S
hist(T) = N th ’
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Parametric vs. Non-Parametric PDFs hﬁ@ ((T"

Alternatively, one can consider non-parametric pdfs
but they depend on bin width and starting position

w.,S ]‘ w.,S
hist(T) = N th ’
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Parametric vs. Non-Parametric PDFs '5@ (C'ﬁ

Alternatively, one can consider non-parametric pdfs
“Average Shifted Histogram minimizes effect of binning

fagp(x ZK“’:C—:UZ
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Parametric vs. Non-Parametric PDFs '55@ ((T"

Alternatively, one can consider non-parametric pdfs
“Average Shifted Histogram minimizes effect of binning
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Kernel Estimation lapp) (C'//

Kernel estimation is the generalization of Average Shifted
Histograms

A =3 g (xh;:cg;)

1

AN\ 1/ iy
h<xi):<§) fols)

- K.Cranmer, Comput.Phys.Commun. 136 (2001).
- [hep-ex/0011057]

Probability Density

[]
iy
| | | | | |

0.95 0.96 0.97
Neural Network Output

“the data is the model”

Adaptive Kernel estimation puts wider kernels in regions of
low probability

Used at LEP for describing pdfs from Monte Carlo (KEYS)
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Multivariate PDFs

Kernel Estimation has a nice generalizations to higher
dimensions

» practical limit is about 5-d due to curse of dimensionality

Max Baak has coded N- COI"I"ElatIOnS 0016

0.014

dim KEYS pdf described 00124

0.014~"
IN Comput.Phys.Commun. 136 (2001) 0008

in RooFit. pdf from previous ‘ 00043 .

slide.

These pdfs have been = RooNDKeys pdf

used as the basis for a automatically

multivariate models (fine)
: . . correlations 0085 N ssample”

discrimination between 007

technique called “PDE”" observables ...
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Correlation / Covariance lapp) ¥

Correlation is a common way to describe how one
variable depends on another

cov|x,y| = Vyy = El(z — pz)(y — 1y))
cov|z, Y]

Pry —
O'xO-y

A

Y /
P
X X X
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Correlation / Covariance

Correlation is a common way to describe how one
variable depends on another

» however, it only captures the lowest order of
dependence between variables, and

cov|x,y| = Vyy = El(z — pz)(y — 1y))
cov|z, Y]

Pry —
O'xO-y

A

Y /
P
X X X
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Propagation of errors

The Covariance matrix plays a central role in
propagation of errors fromz to ¥

k Oy O

2 y oy v

v Z [850-8:1:-] 1
1,7=1 VIl d=0

but remember, that this is only the first-order in the
Taylor expansion

y(@) ~ gD+ 3 [8 ] (s — 1)
1=1

8£Ei

—

T=l
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Mutual Information

A more general notion of ‘correlation’ comes from
Mutual Information:

I(X;Y) = ZZply)lob( ((,x’y)

yeY zeX )pQ(y) ’

— H(Y) — H(Y|X)

) I(X;Y) = H(X) — H(X|Y)
— H(X)+ H(Y) - H(X,Y)

v it is symmetric: 1(X;Y) = I(Y;X)
» if and only if X,Y totally independent: 1(X;Y)=0

» possible for X,Y to be uncorrelated, but not independent

A

Y Mutual Information doesn’t

seem to be used much within
HEP, but it seems quite useful

>
X
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Hypothesis Testing
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Hypothesis testing 1app) ¢
One of the most common uses of statistics in particle

physics is Hypothesis Testing
»assume one has pdf for data under two hypotheses:

- Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis Hi: eg. signal-plus-background

- 50 Eventsi\ 1

Probability

100 120 140 160 180
Events Observed
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Hypothesis testing

One of the most common uses of statistics in particle
physics is Hypothesis Testing

»assume one has pdf for data under two hypotheses:
- Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis Hi: eg. signal-plus-background

» one makes a measurement and then needs to decide
whether to reject or accept Ho
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Hypothesis testing 1app) ¢

One of the most common uses of statistics in particle
physics is Hypothesis Testing

»assume one has pdf for data under two hypotheses:
- Null-Hypothesis, Ho: eg. background-only
- Alternate-Hypothesis Hi: eg. signal-plus-background

» one makes a measurement and then needs to decide
whether to reject or accept Ho
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Hypothesis testing 1app) ¢

Before we can make much progress with statistics, we
need to decide what it is that we want to do.

» first let us define a few terms:

- Type | error: reject Ho when it is true
- Type Il error: accept Ho when Hj is true

» basically the same as “reject H1 when Hi is true”

Actual condition
Guilty Not guilty

False Positive
Verdict of True Positive (i.e. guilt .reported
'guilty’ unfairly)

17 | error
Decision i
False Negative

Verdict of (i.e. guilt
'not guilty' not detected)
Type Il error

True Negative
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Hypothesis testing 1app) ¢

Before we can make much progress with statistics, we
need to decide what it is that we want to do.

» first let us define a few terms: e T

False Positive

- Rate of Type | error « Verdict of (.. guilt reported

True Positive .
'quilty’ unfairly)

¢ Rate Of Type ” /8 Type | error

Decision False Negali
alse Negative
- Power = 1 — ﬁ Verdictof (i.e. guilt

'not guilty' not detected)
Type Il error

True Negative

Treat the two hypotheses asymmetrically

» the Null is special.
- Fix rate of Type | error, call it “the size of the test”

Now one can state “a well-defined goal”
» Maximize power for a fixed rate of Type | error
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Iabw ¢

Hypothesis testing

The idea of a “50" discovery criteria for particle physics is
really a conventional way to specify the size of the test

» usually 50 corresponds to a = 2.87-107"
- eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what
region is sensitive to the presence of a new signal

Probability

‘\\\‘\LA},
80 100 120 140 160 180
Events Observed
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Hypothesis testing 1app) ¢

N

The idea of a “50" discovery criteria for particle physics is
really a conventional way to specify the size of the test

» usually 50 corresponds to a = 2.87-107"
- eg. a very small chance we reject the standard model

In the simple case of number counting it is obvious what
region is sensitive to the presence of a new signal

» but in higher dimensions it is not so easy
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The Neyman-Pearson Lemma lapp) ¥

In 1928-1938 Neyman & Pearson developed a theory in which one
must consider competing Hypotheses:

- the Null Hypothesis H, (background only)

- the Alternate Hypothesis H; (signal-plus-background)

Given some probability that we wrongly reject the Null Hypothesis
o= P(x € W|H)

Find the region W such that we minimize the probability of wrongly
accepting the Hy (when H; is true)

ﬁ:P(CITEW‘Hl)

Note, if data falls in W then we accept Ho

Kyle Cranmer (NYU/LAPP) Statistical Techniques for Particle Physics, May 21-22,2008 LAPP



The Neyman-Pearson Lemma lapp) %

-~
N

The region W that minimizes the probability of wrongly
accepting Hy is just a contour of the Likelihood Ratio

P(ZZZ‘ Hl)
P(QZ‘ H())

> ko

Any other region of the same size will have less power

The likelihood ratio is an example of a Test Statistic, eg. a
real-valued function that summarizes the data in a way
relevant to the hypotheses that are being tested
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A short proof of Neyman-Pearson

Consider the contour of the likelihood ratio that has
size a given size (eg. probability under Ho is 1-«)
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A short proof of Neyman-Pearson

Now consider a variation on the contour that has the
same size
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A short proof of Neyman-Pearson lapp) ¥

Sl d

Now consider a variation on the contour that has the
same size (eg. same probability under Ho)
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A short proof of Neyman-Pearson lapp) ¥

P(\_|Hy) = P(_/|H)y)
PlalHy) _
P(z|Hy) “

P(\_|H1) < P(\_|Ho)k,

Because the new area is outside the contour of the
likelihood ratio, we have an inequality
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A short proof of Neyman-Pearson

k|Ho /\Ho)

P(z|Hy) ¢ P(z|Hp)
P(\_|H1) < P(\_|Ho)k, P(_/|Hy) > P(_/|Ho)k

And for the region we lost, we also have an inequality
Together they give...

Kyle Cranmer (NYU/LAPP) Statistical Techniques for Particle Physics, May 21-22,2008 LAPP
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A short proof of Neyman-Pearson

K\Ho /\Ho)

P(z|Ho) ~ P(z|Ho)

P(K|Hl) < P(KlHO)ka P(/|H1) > P(/|H0)ka

P(x|H,) P(z|H,)

<k > kg,

P(\_|H1) < P(_/|H:)

The new region region has less power.
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Decision Theory lapp) %

b MRS

One of the deficiencies of the Neyman-Pearson approach
is that one must specify the size of the test «

» But where does acome from?
- is it purely conventional or is there a reason?

Much of statistics (and economics, etc.) is devoted to
making decisions.

» need to consider Utility of different outcomes

In the context of decision and utility theory there can be a
justification, but this is rarely done in particle physics
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Decision Theory lapp) ((T//
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he S

One take on “Why 502?”: Utility Theory lapp) %

|
s
=

Instead of arguing about convention, (taken from my thesis)

derive threshold from utility theory:

» assumptions of Game Theory not
appropriate

» let size of the test for discovery be d and for limit setting be @’

N
o

=y
(3]
T

- Discovery

Utility (arbitrary units)
o

o

U(Hy) = (1 —a')-U(Typel) + 3 - U(Limit) + (8 — 3') - U(No Result) :
U(H) = (1 — ) - U(Discovery) + 3" - U(Type Il) + (3 — ') - U(No Result). — Median of H,

7 8 9 1
Discovery Threshold in o

With a prior on Ho/H1 one can use a richer
decision theory. But in a frequentist way,
one obtains:

-
@

Utility (arbitrary units)
o

- -z

O‘ a
L o N N N A

Ideally, the field would establish these utilities instead of working with the purely conventional 5o
requirement. Since that is not the case, it is reasonable to ask “what is this ratio of utilities which -

justifies a 50 discovery threshold?” If we take ¢ = 1% and o = 107, then |U(Type I) /U (Limit)| > -

10°. Perhaps this ratio is reasonable, perhaps not, but it is the ratio under which we operate today.

7
Discovery Threshold in o

Kyle Cranmer (NYU/LAPP) Statistical Techniques for Particle Physics, Mayi@ite22; 2008 hyARFhction of the discovery threshold for a channétA



Simple vs. Compound Hypotheses 1app) ¥

The Neyman-Pearson lemma is the answer for simple
hypothesis testing

- a hypothesis is simple if it has no free parameters and is
totally fixed f(x|Hy) vs. f(z|Hy)

What about cases when there are free parameters?
- eg. the mass of the Higgs boson f(x|Hy) vs. f(z|Hi,mg)

A test is called similar if it has size o for all values of the
parameters

A test is called Uniformly Most Powerful if it maximizes
the power for all values of the parameter

Uniformly Most Powerful tests don’t exist in general
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The Likelihood Function lapp) (‘T’/

When a hypothesis is composite typically there is a pdf that
can be parametrized f(Z|0)

» for a fixed g it defines a pdf for the random variable x

» for a given measurement of x one can consider f(Z|0)
as a function of ¢ called the Likelihood function

» Note, this is not Bayesian, because it still only uses
P(data | theory) and

- the Likelihood function is not a pdf!

Sometimes ¢ has many components, generally divided into:
- parameters of interest: eg. masses, cross-sections, etc.

- nuisance parameters: eg. parameters that affect the
shape but are not of direct interest (eg. energy scale)

- more tomorrow when | discuss systematics
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A common likelihood function

Consider an experiment with multiple channels indexed by i
Each channel has n;j events indexed by j

- with s; signal and bi background expected
Each event has discriminating variables xj; (possibly N-dim)
- with fs(z;;) and fu(z:;)describing signal & bkg components

-and assume signal and background don’t interfere
guantum mechanically, so that the probabilities just add

Then one can write the following pdf / likelihood function

Nchan

Kyle Cranmer (NYU/LAPP) Statistical Techniques for Particle Physics, May 21-22,2008 LAPP



A common likelihood function

Consider an experiment with multiple channels indexed by i
Each channel has n;j events indexed by j

- with s; signal and bi background expected
Each event has discriminating variables xj; (possibly N-dim)
- with fs(z;;) and fu(z:;)describing signal & bkg components

-and assume signal and background don’t interfere
guantum mechanically, so that the probabilities just add

Then one can write the following pdf / likelihood function

Nchan 4
iJs(Xij; Vi) + by i Vi
L(wij|si,bi,vi) = H Pois(n;|s; + b;) H sifs (@i VS), j: b.fb(gj jivi)

J
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An explicit likelihood ratio tapp)

L(%‘Hl) B vachan POZS(TL@|SZ —+ b?,) H;% SZfS(xZJSZ_—::Z fb(ajm)

L(x|H,) [1; " Pois(n|b) [T} f(2)

L _ o & 'Lfs(xz])
q=1InQ = —54 Z Zlﬂ( bifb(il?ij))

50 \\\‘\\\‘\\\‘\\\‘\\\

Q:
In that case:
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Distribution of the test statistic lapp

LEP Higgs Working group developed formalism to combine channels and take advantage of
discriminating variables in the likelihood ratio.

L(x|H,) B Hi\TChan Pois(n;|s; + b;) H;z szfs(:cwsziz i fy(zi5)

L{z[Ho) T Pois(milbi) IT}" (i)
Nchan M4 S, f (I‘ ))
=InQ) = —sy, In A
1=mQ= s 33 (1+ 55
(@ P Hu and Nielsen's CLFFT used Fourier Trans-
form and exponentiation trick to transform

15(@) - the log-likelihood ratio distribution for one
event to the distribution for an experiment

Q=

sf(x)
q(X)=Iog(1+F:(x,)
>

1 4A0N=19

(.M ] Cousins-Highland was used for systematic er-
ror on background rate.

Getting this to work at the LHC is tricky nu-
merically because we have channels with n;

from 10-10000 events (physics/0312050)
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The Likelihood Principle lapp) %
Likelihood Principle

As noted above, in both Bayesian methods and likelihood-ratio
based methods, the probability (density) for obtaining the data at
hand is used (via the likelihood function), but probabilities for
obtaining other data are not used!

In contrast, in typical frequentist calculations (e.g., a p-value which
is the probability of obtaining a value as extreme or more extreme
than that observed), one uses probabilities of data not seen.

This difference is captured by the Likelihood Principle*: If two
experiments yield likelihood functions which are proportional, then
Your inferences from the two experiments should be identical.

L.P. is built in to Bayesian inference (except e.g., when Jeffreys
prior leads to violation).

L.P. is violated by p-values and confidence intervalis.

Although practical experience indicates that the L.P. may be too
restrictive, it is useful to keep in mind. When frequentist results
“make no sense” or “are unphysical”, in my experience the
underlying reason can be traced to a bad violation of the L.P.

*There are various versions of the L.P., strong and weak forms, etc.
Bob Cousins, CMS, 2008
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Examples of Likelihood Analysis lapp) ¢

b CMEES 9

In these examples, a model that relates precision electroweak
observables to parameters of the Standard Model was used

- the inference is based only on the likelihood function
» there is no prior, so it’s not Bayesian
- not a classical confidence interval either: discuss tomorrow

Kyle Cranmer (NYU/LAPP) Statistical Techniques for Particle Physics, May 21-22,2008 LAPP



Examples of Likelihood Analysis lapp) %

In these examples, a model that relates precision electroweak
observables to parameters of the Standard Model was used

- the inference is based only on the likelihood function
- there is no prior, so it’s not Bayesian
- not a classical confidence interval either: discuss tomorrow

My = 144 GeV

: T T T T I

Ao = { —LEP1 and SLD

— 0.02758+0.00035 [} : _ LEP2 and Tevatron (prel.)
0.02749+0.00012 Jff I 68% CL

-+ incl. low Q° data

il Preliminary
I ' 1 —
100 300 175
my [GeV] m, [GeV]
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A Note on Multivariate Algorithms
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Use of Multivariate Methods

Multivariate methods are now ubiquitous in high-energy
physics, the nagging problem is that:

» most multivariate techniques are borrowed from other
fields, and they optimize some heuristic that physicists
aren’t interested in (like a score, or ad hoc training error)

» the difference can be quite large when systematic

uncertainties are taken into account
Whiteson & Whiteson, hep-ex/0607012

-—h
F =Y

11.1:0.3
10.1+ 0.4
10.0+ 0.5

A few recent developments
» Evolutionary techniques
» Matrix Element techniques

Y
N

-
o

o]

[=2)

=Y

Statistical Uncertainty [GeV/cz]

NEAT features

N
Heuristic
INEAT classes

o
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The Neyman-Pearson Lemma lapp) ¥

The region W that minimizes the probability of wrongly accepting
the H is just a contour of the Likelihood Ratio:

L(x|Hy)
L(z|Hy)

> k,

This is the goall

The problem is we don't have access to L(x|Hy) & L(x|H;)
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The Neyman-Pearson Lemma lapp) ¢

The region W that minimizes the probability of wrongly accepting
the H is just a contour of the Likelihood Ratio:

L(x|Ho)

> k,
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Matrix Element Techniques lapp) %

Instead of using generic machine learning algorithms, some
members of the Tevatron experiments are starting to attack
this convolution numerically

‘ ‘-_\_
Y 5
\\ A\
T 745 2279 1271 745 2219

Joint Probability Density

-T\\. __-I | | ‘ 1111 | 1111 | L1l
: ;  N| 1457150 155 160 165 170 175 180 185
1871 1745 79 18T 745 @279 15T 1745 7.9 M, [GeV/c
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Matrix Element Techniques lapp) %
Instead of using generic machine learning algorithms, some
members of the Tevatron experiments are starting to attack
this convolution numerically

PIMG) = - [ d | Mt MO T] £ 030 fror(an) frpr(ao)

N —

Transfer
Functions

Phase-space
Integral

Matrix
Element

‘ ‘-_\_
Y 5
\\ A\
T 745 2279 1271 745 2219

Joint Probability Density

\_\

o+ " i
121, 174.5 7.9 1877 1745 2279 1271 174.5

Kyle Cranmer (NYU/LAPP) Statistical Techniques for Particle Physics, May 21-22,2008 LAPP



Matrix Element Techniques for Theorists 'dﬁﬁ\' ((-’

About 2 years ago, | realized that phenomenologists doing
sensitivity studies can use the Neyman-Pearson lemma directly

» directly integrate likelihood ratio
» model detector effects with transfer functions

- numerically much easier than experimental situation
because one generates hypothetical data

» just as one computes a cross-section for a new signal, one
can compute a maximum significance (at leading order)

| oy L) Pos(als ) T} funlay)
Experimental: %)= Tx[Ho) ~ ~ Pois(lb) 1T folay)
)

X ~ observable sfu(x
q(x) =InQ(x _S+Zln(1+bf:(xj)>

Theoretical: A7) = 0w £+ In ( - das(r)>

_~ phase space doy, (7)

(A

Cranmer, Plehn. EPJ & hep-ph/0605268
59
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Statistical Learning Theory

When solving a given problem,
try to avoid solving a more general problem as an intermediate step.

-V.N. Vapnik
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Learning Machines

Multivariate Algorithms / Learning Machines
are essentially Black Boxes with some parameters.

Formally, a learning machine looks like a family of functions
from an input space I to an output space O,
each specified by some parameters «.

fleel,a) =y €O

Training Data is a set of pairs {x;,y;}

The way in which the function’'s parameters are determined from
training data is associated learning.
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Examples of Learning Machines

Cuts can be viewed
as learning machines

Hidden Layers: Processing Units

Output Unit

Neural Nets can be viewed
as learning machines

weights & biases make up the
parameters
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Risk

Goal of Learning = minimizing some notion of Risk.

_ / Q(z,y; a)p(z, y)dedy

- Use different Q(x, y; ) for different problems

- Note: in general we don't know p(z,y).

In practice, we only have the Empirica/ Risk

ZQ Ti, Ui @
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Risk

Goal of Learning = minimizing some notion of Risk.

_ / Q(z,y; a)p(z, y)dedy

- Use different Q(x, y; ) for different problems

- Note: in general we don't know p(x, y)exactly

In practice, we only have the Empirica/ Risk

ZQ Ti, Ui @
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Examples of Risk

Goal of Learning = minimizing some notion of Risk.

R(a) = / Q(z, y; )p(z, y)dedy

Problem Appropriate Q(z,y; «) Used by

Classification ly — f(z; a) Support Vector
Regression ly — f(z; )|? Neural Networks

New Particle Search  yO(k, + f(z;a)) 77
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Limits on Risk lapp) %
Surprisingly, there are general bounds on the
Risk of a Multivariate Algorithm, given by:

R(a) = / Qlz, y; )p(z, y)dody

Romo(a) 4 \/ (h(log(2l /h)l ~log(1 /4))

1 —n — the confidence the bound holds.

[ — the sample size
For Sample Size of 10,000

VC Confidence

h — the Vapnik Chervonenkis dimension

95% Confidence Level

(holds for 0 < @ < 1)

01 02 03 04 05 06 07 08 09 1

h /1= VC Dimension / Sample Size

Kyle Cranmer (NYU/LAPP) Statistical Techniques for Particle Physics, May 21-22,2008 LAPP



Limits on Risk

Surprisingly, there are general bounds on the
Risk of a Multivariate Algorithm, given by:

R(a) = / Qlz, y; )p(z, y)dody

Romo(a) 4 \/ (h(log(2l /h)l ~log(1 /4))

1 —n — the confidence the bound holds.

[ — the sample size
For Sample Size of 10,000

VC Confidence

h — the Vapnik Chervonenkis dimension

95% Confidence Level

(holds for 0 < @ < 1)

01 02 03 04 05 06 07 08 09 1
h /1=VC Dimension / Sample Size

Support Vector Machines aim to minimize the limit on Risk by
balancing Remp and complexity of learning machine characterized by h
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VC Dimension lapp) %

The VC dimension A is equal to the maximal number of points that can be
shattered by the learning machine f(z; ).

“A set {x;} is shattered by f(x;a)” means that for every permutation of
classifications {x;,y;}, there is an « such that f(x;;a) = y;.

>o\ \O< ] Examples:

An oriented line can shatter
3 points in R?

)’/ /o(o /0 o/ ® A Hyperplane can shatter
° e 0 o d + 1 points in R?

Note: Not every set of h elements must be shattered by f(z;«), but just one.
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Importance of VC Dimension

Suggests:  (# Training Samples) > (20 x VC dim)

Higher VC dimension — Higher Generalization Capacity — Higher Risk
The Risk bound essentially describes potential for over-training.
Tighter bounds are possible with an independent testing set.

Algorithm VC Dim Equivalent #
Training Samples
cuts (7-d) 2d = 14 ~1,000
Genetic Programming 100 ~7,000
NN (7-10-10-1) 400 ~25,000
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Importance of VC Dimension lapp)

Suggests:  (# Training Samples) > (20 x VC dim)

Higher VC dimension — Higher Generalization Capacity — Higher Risk
The Risk bound essentially describes potential for over-training.
{7 Tighter bounds are possible with an independent testing set.

Algorithm VC Dim Equivalent #
Training Samples
cuts (7-d) 2d = 14 ~1,000
Genetic Programming 100 ~7,000
NN (7-10-10-1) 400 ~25,000

Because we usually have an independent testing set, the
limit on true Risk is often not very useful in practice

Kyle Cranmer (NYU/LAPP) Statistical Techniques for Particle Physics, May 21-22,2008 LAPP



Genetic Programming lapp) ¥

B

R.S. Bowman and | brought a technique called Genetic
Programming to HEP. It's a program that actually writes
programs to search for the Higgs!  comput. Phys. Commun [physics/0402030]

The FOCUS collaboration has re-
cently used Genetic Programming

to study doubly Cabibbo suppressed

decay of D" — K n" 7™ relative to
Cabbibo favored D™ — K nr 7™

hep-ex/0503007

[ b) Selected DCS |

Events/5 MeV/c

Yield = 466 = 36

1
1.76 1.78 1.8 1.82 1. 1. 1. 1.9 1.92 1.94
GeV/c?

Kyle Cranmer (NYU/LAPP) Statistical Techniques for Particle Physics, May 21-22,2008 LAPP




Review

Axioms of Probability
» Frequentist & Subjective Bayesian interpretations
Bayes’ Theorem
» Frequentist and Subjective Bayesian examples
Basic Information Theory
» entropy and mutual information
Probability Density Functions
» parametric and non-parametric
Hypothesis Testing and Decision Making
» Type | and Il errors; size and power
» the Neyman-Pearson lemma
» simple vs. compound hypotheses
The Likelihood Function & Likelihood Principle
» nuisance parameters
Multivariate Analysis & Statistical Learning Theory
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Next time... lapp) %

b MRS

The Neyman-Construction
Coverage as a calibration for our statistical device

Systematics, Systematics, Systematics

The strategical challenge of searches for Beyond the
Standard Model
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