

Seminaire LPNHE/UPMC – 20 juin 2013

Ion traps: drilling neutron stars & dropping antimatter

David Lunney (with the ISOLTRAP & GBAR Collaborations) *CSNSM/IN2P3-CNRS, Université de Paris-Saclay, Orsay*

Overview

Introduction

- Nuclear and Astrophysics: a little history
- How we measure masses and why
- Impact of Penning traps

Penning traps

- ➢ Basic principles
- How to prepare beams and weigh nuclides

- ⁸²Zn plumbing neutron stars
- ➢ ⁵²Ca − a new magic neutron number
- ۲
 - Gravitational Behavior of Antimatter at Rest (GBAR)

The particle zoo

Nuclear chart

(as seen by a particle physicist!)

HFB – Gogny: D1S (S. Hilaire et al.) http://www-phynu.cea.fr/

"magic" numbers

The shell model

Nobel Lecture, December 12, 1963

My attention was then called to <u>Elsasser's papers written in 1933</u>. In the year 1948 much more was known about properties of nuclei than was available to Elsasser. The magic numbers not only stood up in the new data, but they appeared more clearly than before, in all kinds of nuclear processes. It was no longer possible to consider them as due to purely accidental coincidences.

Nuclear Binding Energy

mass measurements: scale

Earth's radius: 6000 km

Pairing: 400 keV

Shell gap: 3-4 MeV (~10⁻⁵)

Binding Energy A = 100: ~ 1 GeV (about 1% total)

A = 100 nucleus $\sim 100 \text{ GeV/c}^2$

Mass spectrometry: a long tradition

F.W.Aston (~1920's): 212 isotopes discovered

A. Eddington (~1920) Stellar combustion

$$E = mc^2$$

Firing the stellar furnace; and resolving questions about the age of the sun

(A = 100 isobars)

Where has the magic gone?

(New) magic number N = 32 !

From the "eleven greatest unanswered questions":

3. How were the heavy elements from iron to uranium made?

rapid neutron-capture (*r*) process: Burbidge, Burbidge, Fowler and Hoyle, *Rev. Mod. Phys.* (1957) Arnould, Goriely, Takahashi, *Physics Reports* (2007)

S. Woosley and T. Janka, *Nature Physics* (2005) D. Price and S. Rosswog, *Science* (2006)

	Tecl	niques	
	Indirect	Direct (mass spectrometry)	PRODUCTION SCHEME
$\frac{\text{reactive}}{A(a,b)}$	$\frac{\text{ons:}}{B}$	<u>time of flight</u> : SPEG/CSS2 - GANIL NSCL ESR - GSI	FIFS (MeV)
decay	S:	<u>cyclotron frequency:</u> Penning-tran	gas cell RFQ
$\begin{array}{c} \underline{A \rightarrow A} \\ Q_{\alpha} = \end{array}$	$\frac{\Delta A}{B} + \alpha$ $M_B - M_A$	Mass spectrometry ISOLTRAP and	ISOL (keV)

Mass measurements worldwide

Complementarity

Penning traps at radioactive ion-beam facilities

Production	ISOLTRAP CERN	TITAN TRIUMF	SHIPTRAP GSI	MLLTRAP LMU	JYFLTRAP	LEBIT NSCL	CPT ANL	TRIGA- TRAP
ISOL	x	x						
Fusion- evaporation			x	х				
IGISOL					x			
Fragmentation						х		
Spontaneous Fission							X	
Neutron-induced fission								X

Traps in planning or for other purposes

- THeTRAP, FSU-TRAP, SMILETRAP II (Shanghai-EBIT)
- HITRAP, PENTATRAP, MATS, Lanzhou-TRAP, RIKEN-TRAP

➢ WITCH, LPC-TRAP

complementarity

Ion traps: the 1989 Nobel Prize

Physica Scripta Vol. T59, 87-92, 1995

"That I May Know the Inmost Force that Binds the World and Guides its Course"

Hans Dehmelt

Department of Physics, FM-15, University of Washington, Seattle, WA 98195, U.S.A.

Abstract: This talk touches upon the following subjects: Geothe's *Faust*, the magic of Democratus' " $\alpha \tau \circ \mu \circ \nu$ ", ... seeing an atom with my eyes, bringing an electron to rest, ... and the cosmon, the simplest thing that ever was.

Penning trap

- Charged particle stored by superposition of strong homogeneous magnetic field in z direction and weak, electrostatic potential for axial confinement
 - Frequency measurement
 - Long storage times
 - Single-ion sensitivity
 - High precision

Frequency measurement: eigenmotion in the trap can be used to determine mass

$$v_c = v_+ + v_- \qquad \longrightarrow \qquad v_c = \frac{1}{2\pi} \frac{q}{m} B$$

L. S. Brown and G. Gabrielse , Rev. Mod. Phys. **58**, 233 (1986) H. Dehmelt: 1989 Nobel Prize in Physics

ISOLTRAP operation

Preparing an Ion Ensemble

Purification of Ion Bunches

Purification of Ion Bunches

Purification and Preparation

Physics with ISOLTRAP 2004-201

Ejection of the outer crust material: enrichment of nuclei up to A~130 !

S. Goriely, N. Chamel, H.-T. Janka, J.M. Pearson, A&A (2011)

Synopsis: Italian Delicacies Served Up in a Neutron Star Crust

C. O. Dorso et al., Phys. Rev. C (2012)

Topological characterization of neutron star crusts C. O. Dorso, P. A. Giménez Molinelli, and J. A. López Phys. Rev. C 86, 055805 (2012) Published November 29, 2012

The matter in the outermost layer, or "crust," of a neutron star (the remnant of a supernova) is believed to host a variety of phases in which dense regions of nucleons are filled with voids of lower density. The presence of the phases, euphemistically referred to as "nuclear pasta" because of their resemblance to the shapes of lasagna, gnocchi, and spaghetti, may affect the emission of neutrinos, the primary mechanism by which the neutron star cools. In *Physical Review C*, Claudio Dorso of the University of Buenos Aires, Argentina, and colleagues report that a set of topological and geometric descriptors can accurately identify each pasta phase predicted by dynamical simulations, a labeling scheme that could be used to directly map the shape of a pasta phase to its effect on neutrino emission and neutron star cooling.

Dorso *et al.* classify a particular pasta phase by defining its volume, area, mean curvature, and its Euler characteristic—a number that represents the phase's topology. Although pasta phases have long been studied theoretically, the authors' calculations are some of the first to use a classical molecular dynamics model that is consistent with low- to medium-energy nuclear reactions. Moreover, they make no initial assumptions about the phase structure, which should help clarify the balance of forces and parameters that lead to the formation of each phase. – *Joseph Kapusta*

Previous synopsis | Next synopsis

Article Options

📄 Printable Version

Subject Areas

- Astrophysics
- Nuclear Physics

Related Articles

More Astrophysics

Waiting for Dark Matter to Light Up Synopsis | Jan 22, 2013

Weighing Models of Neutron Stars Synopsis | Jan 22, 2013

All Astrophysics »

More Nuclear Physics

Weighing Models of Neutron Stars Synopsis | Jan 22, 2013

Sizing Up Quark Interactions Synopsis | Jan 3, 2013

Synopsis: New Shape to Nuclear Pasta

Exploring the Nuclear Pasta Phase in Core-Collapse Supernova Matter Helena Pais and Jirina R. Stone Phys. Rev. Lett. **109**, 151101 (2012) Published October 11, 2012

H. Pais and J. R. Stone, Phys. Rev. Lett. (2012)

A core-collapse supernova is the last stage of life of a massive star. In the dying star, matter is compressed to densities exceeding the density of atomic nuclei and exposed to extreme temperatures and pressures. It has been proposed that, at a certain stage of the collapse, matter self-organizes into what is known as "nuclear pasta," a collection of bizarre structures, such as rods, slabs, and cylindrical and spherical holes (bubbles), which may constitute 10-20% of the inner core of the collapsing star.

Writing in *Physical Review Letters*, Helena Pais and Jirina Stone develop a fully self-consistent microscopic theory that describes the formation of nuclear pasta as the density increases. Their model predicts all the structures identified in previous studies, and finds evidence for a never-before-seen formation with a "cross-rod" shape.

The authors describe nuclear pasta as belonging to the general category of frustrated matter, which has been identified in other systems such as soft solids, ferromagnets, glasses, and biological materials. Frustration occurs when multiple competing forces cannot find a balance within the symmetry of the system, resulting in an unstable system easily driven by fluctuations between multiple degenerate ground states. For supernova matter, such competing forces are nuclear attraction and Coulomb repulsion.

The formation of nuclear pasta is likely to have profound consequences for neutrino transport. Since neutrinos are supposed to play a crucial role in a supernova explosion, the model proposed by the authors may contribute towards a more realistic description of the dynamics of a collapsing star. – *Matteo Rini*

Previous synopsis | Next synopsis

Article Options

📥 Printable Version < Share/Email This

Subject Areas

- Astrophysics
- Nuclear Physics

Related Articles

More Astrophysics

Waiting for Dark Matter to Light Up Synopsis | Jan 22, 2013

Weighing Models of Neutron Stars Synopsis | Jan 22, 2013

All Astrophysics »

More Nuclear Physics

Weighing Models of Neutron Stars Synopsis | Jan 22, 2013

Sizing Up Quark Interactions Synopsis | Jan 3, 2013

All Nuclear Physics »

ISOL)TRAP(

Composition of the Neutron-Star Crust

(figure) R.N. Wolf et al. Phys. Rev. Lett. (2013) J.M. Pearson, S. Goriely and N. Chamel, PRC 83 (2011)

Within the WS cell approximation, the composition in complete thermodynamic equilibrium can be determined by minimizing the Gibbs energy of the WS cell at a given pressure (Baym et al. 1971; Hilf et al. 1974; Haensel et al. 1994, Ruster et al. 2006)

 $G_{cell}(Z,A) = W_N(Z,A) + W_L(Z,n_N) + [\varepsilon_e(Z,n_e) + P]/n_N$

- $W_N(Z,A)$: total energy of the nucleus (including rest mass of nucleons)
- $W_L(Z,n_N)$: Body-centered cubic lattice energy per cell
- $\epsilon_{e}(Z,n_{e})$: mean electron energy density
- $P=P_e(Z,n_e)+P_L(Z,n_N)$: Total pressure
- n_N: number density of nuclei;

Gibbs free energy & nuclear binding energy

Fig. 3. Distribution of the Gibbs free energy per nucleon at T = 0 and $\rho = 3.7 \times 10^{11} \text{ g/cm}^3$. ΔG corresponds to the difference of the free energy per nucleon with respect to the minimum value obtained at this

S. Goriely, N. Chamel, H.-T. Janka, J.M. Pearson, A&A 531, A78 (2011)

PHYSICAL REVIEW

- Depth profile of a neutron star using experimental masses, models & equation of state
 Solve (relativistic) Tolman-
 - Solve (relativistic) Tolman-Oppenheimer-Volkov equations:

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -G\frac{\{\mathcal{M}(r) + 4\pi r^3 P(r)/c^2\}\{\mathcal{E}(r) + P(r)\}}{r\{rc^2 - 2G\mathcal{M}(r)\}}$$

with

$$\frac{\mathrm{d}\mathcal{M}}{\mathrm{d}r} = 4\pi \mathcal{E}(r)r^2/c^2,$$

in which \mathcal{E} denotes the total energy density, mass (in the outer crust, $\mathcal{E} \simeq \rho c^2$) and \mathcal{M} is the

> J.M. Pearson, S. Goriely, and N. Chamel, PRC 83 (2011)

> > R.N. Wolf et al.

Phys. Rev. Lett. (2013)

physics

Mass measurements... of neutron stars!

Synopsis: Weighing Models of Neutron Stars

Plumbing Neutron Stars to New Depths with the Binding Energy of the Exotic Nuclide ⁸²Zn

R. N. Wolf, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, N. Chamel, S. Goriely, F. Herfurth, M. Kowalska, S. Kreim, D. Lunney, V. Manea, E. Minaya Ramirez, S. Naimi, D. Neidherr, M. Rosenbusch, L. Schweikhard, J.

PRL 110, 041101 (2013)

PHYSICAL REVIEW LETTERS

week ending 25 JANUARY 2013

Article Options

Printable Version

Share/Email This

Plumbing Neutron Stars to New Depths with the Binding Energy of the Exotic Nuclide ⁸²Zn

R. N. Wolf,^{1,*} D. Beck,² K. Blaum,³ Ch. Böhm,³ Ch. Borgmann,³ M. Breitenfeldt,⁴ N. Chamel,⁵ S. Goriely,⁵
F. Herfurth,² M. Kowalska,⁶ S. Kreim,^{3,6} D. Lunney,⁷ V. Manea,⁷ E. Minaya Ramirez,^{2,8} S. Naimi,^{7,9}
D. Neidherr,^{2,3} M. Rosenbusch,¹ L. Schweikhard,¹ J. Stanja,¹⁰ F. Wienholtz,¹ and K. Zuber¹⁰
¹Institut für Physik, Ernst-Moritz-Arndt Universität Greifswald, 17487 Greifswald, Germany
²GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße I, 64291 Darmstadt, Germany
³Max-Planck-Institut für Kernphysik, Saupfercheckweg I, 69117 Heidelberg, Germany
⁴Instituut voor Kern- en Stralingsfysica, KU Leuven, Celestijnenlaan 200d, B-3001 Heverlee, Belgium
⁵Institut d'Astronomie et d'Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels, Belgium
⁶CERN, 1211 Geneva 23, Switzerland
⁷CSNSM-IN2P3-CNRS, Université Paris-Sud, 91405 Orsay, France
⁸Helmholtz-Institut Mainz, 55099 Mainz, Germany
⁹RIKEN Nishina Center for Accelerator-based Science, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
¹⁰Institut für Kern- und Teilchenphysik, Technische Universität Dresden, 01069 Dresden, Germany (Received 28 October 2012; published 22 January 2013)

From cover to cover...

<u>lon traps:</u> drilling neutron stars & <u>dropping antimatter</u>

The GBAR Experiment (CERN AD-7)

Gravitational Behavior of Antimatter at Rest

Goal:

measure \overline{g} for (first) WEP test using antimatter

A. Knecht, LEAP (2013)

GBAR (AD-7; SPSC-P-342): P. Perez, spokesperson; SPP/IRFU-Saclay; Collaboration: CSNSM-Orsay; ETH-Zurich; RIKEN; U. Swansea; U. Mainz; LKB/ENS-UPMC; NCBJ-Otvosk; LPI-Moscow; Uppsala U.; Tokyo U.; U. Tokyo; ILL-Grenoble; IPCMS-Strasbourg

Antimatter and Gravity

Goal: Method: measure \overline{g} for (first) WEP test using antimatter "easier" manipulation of H⁺ (Walz & Hänsch, 2004)

GBAR Schematic

GBAR antiproton decelerator

Decelerator test-bench in Orsay

5 keV N⁺ beams 1 uA CW or 100 ns pulses

e⁺/Ps demonstrator in Saclay

P. Dupré, A new scheme to accumulate positrons in a Penning-Malmberg trap with a Linac-based pulsed source, 10th International Workshop on Non-Neutral Plasmas, 27-30 August 2012, Greifswald (Germany); AIP Conf. Proc. (2013) in print.

new e⁺ line for Ps and materials research

L. Liszkay et al. (2012)

Calculation of $\overline{\mathrm{H}}^+$ production

Laser: 410 nm; 1-mJ, 50-ns pulse \rightarrow 30% Ps(3d) available Realisation in progress with LKB (thesis work of P. Comini)

P. Comini and P-A. Hervieux, *H* and *H*+ production cross sections for the GBAR experiment, Proc. 16th Int. Conf. Positron Annihilation, 19-24 August 2012, Bristol, UK (2013) in print

Detection setup

AD Hall with ELENA (and GBAR)

present GBAR layout

BA

GBAR numbers: ELENA: 5×10^6 antiprotons/spill (100 s) POSITRAP: 10^{10} positrons (linac@200 Hz) $\rightarrow 0.5$ HBAR+ cooled to 10 mK dropped 0.3 m @ 2.5 m/s \rightarrow dg/g = 1% for N=10³

ELENA

Other tasks (workpackages...)

Conceptual Design Report & MoU in progress

Work Package	Institutes		
Fast e ⁺	NCBJ, IRFU		
Slow e ⁺	IRFU, Swansea, TUS		
e ⁺ accumulation	RIKEN, IRFU, CSNSM		
Positronium	LKB, IRFU, ETHZ		
Antiproton deceleration	CSNSM, IRFU, LKB, Tokyo		

$\overline{H} \& \overline{H}^+$		Swansea, IRFU, LKB			
\overline{H}^+ cooling		Mainz, LKB, ILL			
	Detector	ETHZ, IRFU, Mainz			
Theory		IPCMS, LKB, Lebedev, Uppsala			
	Slow control, DAQ	IRFU, all			
Quantum States		ILL, LKB			

... et si il y avait LPNHE?!

GBAR Timeline

Letter SPSC	of Intent -2007-03	t 38	Research Board AD-7		ELENA BPPC	ELENA BPPC		
2007	2	2011	2012/05	5 2012/06	2012/09) 2012	2/11	2013
	F	Proposal SPSC-P-34	2	ADUC		ADU	С	
GBAR develo	pment	GBAR off commissi	-line oning	GBAR installation	GBAR of commission	on-line ssioning	Run?	
2013		2014		2015	2016		2017	
GBAF MoU	2			ELENA installation	ELENA commis	ssioning		

The AEgIS collaboration (~50 ϕ)

M. Prevedelli	Gênes G. Testera, V.Lagomarsino, Z.Zavatarelli, R. Vaccarone	Milan Milan A.Giammarchi, S.Cialdi, R.Ferragut, G.Consolati, F.Moia, F.Castelli, F.Prelz	Bonomi, A. Fontana, L. Dassa, A. Rotondi, C. Riccardi
R. Brusa, S. Mariazzi, G. Nebbia, G. Ferrari	CERN <u>M. Doser</u> J.Bremer, A. Dudarev, S. Haider, G. Burkhart	F. Merkt, S. Hogan	C. Amsler, C. Canali, C. Regenfus, J. Storey
Heidelberg Univ. A. Kellerbauer	Heidelberg MPI-K M. Oberthaler	V. Petracek	Bergen Univ. Olso Univ. H. Sandaker, J. P. Hansen O. Rohne
A Moscou A N A R S. Gninenko, A. Belov, V. Matveev	H. El Mamouni P. Lebrun P. Nedelec	Lab. A. Cotton Orsay L. Cabaret D. Comparat	

Conclusion

- Penning trap: versatile tool that achieves the ultimate (state-of-the-art) performance
- 20-year legacy in mass spectrometry of exotic nuclides
- Recent (exciting) results in nuclear physics, astrophysics
- Reaches to other fields involving fundamental physics; i.e. antimatter: ALPHA/ATRAP and soon AEgIS/GBAR
- Wouldn't you like to join us?!

ISOLTRAP Collaboration

für Kernphysik ERNST MORITZ ARNDI UNIVERSITÄT GREIFSWALD CSNS 199192 KATHOLIEKE UNIVERSITE

D. Atanasov, K. Blaum, Ch. Böhm, Ch. Borgmann, R. B. Cakirli, S.Eliseev, S. Naimi

S. George, M. Rosenbusch, R. Wolf, L. Schweikhard, F. Wienholtz

G. Audi, D. Lunney, M. Wang, V. Manea

D. Beck, F. Herfurth, Y. Litvinov, E. Minaya-Ramirez, D. Neidherr

J. Stanja, K. Zuber

T. Cocolios, D. Fink, M. Kowalska, S. Kreim

M. Breitenfeldt

Merci pour l'invitation!

GBAR Collaboration

D. Lunney¹, P. Dupré¹, P. Grandemange¹, V. Manea¹, A. Badertscher², P. Crivelli², A. Curioni², A. Marchionni², B. Rossi², A. Rubbia², V. Nesvizhevsky³, P-A. Hervieux⁴, G. Manfredi⁴, D. Brook-Roberge⁵, P. Comini⁵, P. Debu⁵, L. Liszkay⁵, B. Mansoulié⁵, P. Pérez⁵, J-M. Rey⁵, J.-M. Reymond⁵, Y. Sacquin⁵, B. Vallage⁵, A. Voronin⁶, F. Biraben⁷, P. Cladé⁷, A. Douillet⁷, G. Dufour⁷, S. Guellati⁷, L. Hilico⁷, P. Indelicato⁷, A. Lambrecht⁷, R. Guérout⁷, J-P. Karr⁷, F. Nez⁷, S. Reynaud⁷, V-Q. Tran⁷, F. Schmidt-Kaler⁸, J. Walz⁸, M. Staszczak⁹, S. Wronka⁹, A. Mohri¹⁰, Y. Yamazaki¹⁰, M. Charlto¹¹, S. Eriksson¹¹, N. Madsen¹¹, D.P. van der Werf¹¹, N. Kuroda¹², H. Torii¹², Y. Nagashima¹³, P. Froelich¹⁴

CSNSM Orsay (FR), 2. ETH Zurich (CH), 3. ILL Grenoble (FR), 4. IPCMS Strasbourg (FR),
 IRFU Saclay (FR), 6. Lebedev Moscow (RU), 7. LKB Paris, (FR), 8. JGU Mainz (GE),
 9. NCBJ Otwock-Swierk (PL), 10. RIKEN (JP), 11. Swansea University (UK),
 12. University of Tokyo, Komaba, (JP), 13. Tokyo University of Science, (JP), 14. Uppsala University (SE)

