Results from T2K

Vyacheslav Galymov CEA-Saclay IRFU/SPP for the T2K collaboration

GDR MAY 2013 - V. GALYMOV

Outline

- Introduction
- Measurement of ν_{μ} disappearance
- Measurement of v_e appearance
- Summary & conclusions

• Off-axis v_{μ} beam

- Tuned to oscillation maximum (~0.6 GeV)
 - \rightarrow high statistics in the region of the oscillation signal
- Low energy narrow band neutrino beam
 - → less background caused by high energy neutrinos
- Beam direction controlled to better than 1 mrad (~2% shift in peak energy) ← INGRID

Near detectors

INGRID (on-axis)

- Measure beam direction
- Monitor ν beam stability

ND280 (off-axis)

- Measure ν beam composition and energy spectrum in direction of the far detector
- Measure interaction cross sections for different channel

Far detector: Super-Kamiokande (SK)

History of data-taking

Results shown in this talk are based on 3.01×10^{20} POT $\leftarrow \sim 4\%$ of total T2K approved POT 7.8 $\times 10^{21}$

ND280 constraint

- Weights to correct the predicted event rates at the near and far detectors are obtained
- Prior systematic uncertainties are constrained

ν_{μ} event selection at the T2K far detector

- Event in the fiducial volume & compatible w/ beam timing
- Single ring only (CCQE-tailored, for which one can accurately recon E_{ν})
- ✤ PID is µ-like

Number of events

- Reconstructed momentum greater than 200 MeV/c
- Number of decay electron ≤ 1

-			
	Data	MC Total <	$\sin^2 \theta_{23} = 1.0$
FCVF	174	168.9	$\Delta m_{32}^2 = 2.4 \times 10^{-3} \mathrm{eV}^2$
One-ring	88	85.7	
µ-like	66	69.7	57% CCQE
p _µ >200MeV/c	65	69.3	38% CCnonQE
Ndcy <= 1	58	59.9	0/0110

9

Fit results

Best fit point:

$$\sin^2 2\theta_{23} = 1.0$$

 $|\Delta m_{32}^2| = 2.44 \times 10^{-3} \text{eV}^2$

GDR MAY 2013 - V. GALYMOV

Parameter limits

Measuring maximal mixing Dominated by statistical uncertainty

Predicted number of v_e events

Predicted # of events with 3.01 x 10²⁰ POT

	The predicted number of events			
Event category	$\sin^2 2\theta_{13} = 0.0$	$\sin^2 2\theta_{13} = 0.1$		
Total	3.28	11.16		
ν_e signal	0.19	8.20		
ν_e background	1.75	1.63		
ν_{μ} background	1.18	1.18		
$\overline{\nu}_{\mu}$ background	0.07	0.07		
$\overline{\nu}_e$ background	0.09	0.09		

Systematic uncertainties

	$\sin^2 2\theta_{13}$		
Error source	0.0	0.1	
Flux + xsec (w/ ND280)	8.5	5.0	
xsec (from other exp.)	6.5	7.7	
Final state interactions	2.9	2.3	
Far detector	6.8	3.0	
Total	13.0%	9.9%	

Uncertainties are reduced with ND280 measurement

Beam v_e measurement at ND280

- Intrinsic beam ν_e is the main irreducible background for $\nu_\mu \rightarrow \nu_e$
- Check whether measured v_e rate is consistent with expectation

• Simultaneously fit e^- & e^+ samples to determine v_e and γ normalizations

 $CC v_e Data/MC = 0.88 \pm 0.10(stat.) \pm 0.15(syst.)$

Selection of v_e candidates at T2K

3.01E+20 POT	Data
Fully contained FV	174
Single ring	88
e-like	22
$E_{vis} > 100 \; {\rm MeV}$	21
No decay e	16
2γ invariant mass cut	11
$E_{ u}^{rec} < 1250 \; { m MeV}$	11

After selection cuts:

11 candidate events are observed

11.2 are expected for $\sin^2 2\theta_{13} = 0.1$

Allowed regions of $\sin^2 2\theta_{13}$ for each value of δ_{CP} ArXiv 1304.0841, submitted to PRD

Best fit @ δ_{CP} = 0.0:

Normal hierarchy: $\sin^2 2\theta_{13} = 0.088^{+0.049}_{-0.039}$ $0.030 < \sin^2 2\theta_{13} < 0.175$ Inverted hierarchy: $\sin^2 2\theta_{13} = 0.108^{+0.059}_{-0.046}$ $0.038 < \sin^2 2\theta_{13} < 0.212$

In summary ...

- With ~4% of the total POT we plan to collect:
 - T2K has already the world's best precision on θ_{23}
 - Observed 11 ν_e candidate events $\rightarrow \sin^2 2\theta_{13} = 0$ excluded at 3.1 σ

Data taking is on-going and the goal is to collect
 ~8 × 10²⁰ POT by July 2013 ← almost 3x more than
 what was shown today

T2K program

- Precision measurement of disappearance
 - Is θ_{23} really maximal?
 - Precise measurement is also important for probing CPV
- Precision measurement of v_e appearance
 - Try to see first hints of CPV
- Cross-section measurements at ND280
- Explore possibility of measurements with anti-nu beam

Extra

PMNS matrix elements and mass differences in long baseline neutrino oscillation experiments

$$v_{\mu}$$
 disappearance:
$$P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - \sin^{2} 2\theta_{23} \sin^{2} \left(\frac{\Delta m_{32}^{2} L}{4E}\right)$$
***** v_{e} appearance:
$$P(v_{\mu} \rightarrow v_{e}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right) + (CPV term) + \left(\frac{Subleading}{terms}\right)$$
CPV term $\propto \sin \theta_{12} \sin \theta_{13} \sin \theta_{23} \sin \delta$
CPV term $\propto \sin \theta_{12} \sin \theta_{13} \sin \theta_{23} \sin \delta$
Through matter effects
Sensitive to the CPV phase δ .
All mixing angles need to be
non-zero

Numu events @ SK

RUN1+2+3 3.010x10 ²⁰ POT	Data	MC Expectations w/ oscillation				
		MC total	ν _μ +ν _μ CCQE	v _µ +v _µ CC non-QE	v _e +v _e CC	NC
True FV	-	299.35	49.67	109.50	8.62	131.56
FCFV	174	168.86	37.60	82.80	8.24	40.23
One-ring	88	85.65	35.27	33.67	5.28	11.43
µ-like	66	69.67	34.58	31.61	0.04	3.43
p _µ >200MeV/c	65	69.25	34.34	31.54	0.04	3.33
N _{dcy-e} <=1	58	59.86	33.90	22.73	0.04	3.19
Efficiency [%]	-	20.0	68.2	20.8	0.4	2.4