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The Cosmic Microwave Background 
• … is the thermal radiation originating from the primordial plasma, predicted by 

Gamow, Zel’dovitch, Peebles, etc. (following theoretical arguments based on 
nucleosynthesis and the presence of hydrogen in the universe)  
 
 
 
 
 
 
 

• … was emitted at photon decoupling,  
           billions years ago, when T~eV 

 
• … first observed by Penzias and Wilson 
           in 1964 
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Gamow 
Zel’dovitch Peebles 



The Cosmic Microwave Background 
• … should contain temperature/density inhomogeneities, that are the seeds of all 

large structures in the universe (formed by gravitational collapse), predicted by 
theorists in the 70’s to be of the order of 10-5  

 
• … first observed on large angular scales by COBE in 1992 in the form of 

temperature anisotropies… and later by DASI as polarisation anisotropies … 
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The Cosmic Microwave Background 
• … anisotropies should contain non-trivial spatial correlations 

 

• Detailed characteristics of these correlations predicted in the 70’s (Silk, Yu, 
Peebles, Zel’dovitch, … ) 
 

• Standard model for CMB anisotropies: 
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• General relativity, simple QED, assumption of homogeneous and isotropic 
Friedmann-Lemaître universe with at least photons, electrons, baryons, 
neutrinos, CDM, Λ 

• Primordial fluctuations from inflation induce temperature fluctuations in photon-
baryon fluid 

• Acoustic waves due to photon pressure, modulated by baryon inertia and 
gravitational interactions 

• Photon-electron decoupling: diffusion processes inducing fluctuation damping 
and photon polarization 

ing
re

die
nts

 



The Cosmic Microwave Background 
• Primary anisotropies: temperature 2-point function at decoupling features one 

correlation length = sound horizon at decoupling (real space), or peak series 
(multipole space) 
 
 
 
 
 
 
 
 

• Secondary anisotropies: 
• Light deflection by gravitational lenses 
• Gravitational redshifting by structures along line of sight 
• Rescattering in reionized universe at low redshift 
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Primary CMB spectrum  
• In simplest cosmological models,  
      CMB spectrum affected  
      by 8 physical effects  

 
              
 
 

 
• Theoretical predictions for Cl precise at 0.01% level (0.1% in Planck analysis) with) 

or CLASS (class-code.net) 
• Minimal ΛCDM: 8 effects controlled by 6 parameters 
• Some easy to detect, some are more difficult (cosmic variance): degeneracies 
• Extended models: some extensions bring more independent effects [neutrino 

masses, variations of Neff], some do not [curvature] 
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• Minimal ΛCDM: 8 effects controlled by 6 parameters 
• Some easy to detect, some are more difficult (cosmic variance): degeneracies 
• Extended models: some extensions bring more independent effects [neutrino 

masses, variations of Neff], some do not [curvature] 
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Primary CMB spectrum  
• In simplest cosmological models,  
      CMB spectrum affected  
      by 8 physical effects  

 
             --- commercial spot ---- 
      “Neutrino cosmology”, CUP, 60 CHF 
         --- end of commercial spot --- 

 
 

• Minimal ΛCDM: 8 effects controlled by 6 parameters 
• Some easy to detect, some are more difficult (cosmic variance): degeneracies 
• Extended models: some extensions bring more independent effects [neutrino 

masses, variations of Neff], some do not [curvature] 
• Theoretical predictions for Cl precise at 0.01% level (0.1% in Planck analysis) with 

CAMB (www.cosmologist.info) or CLASS (class-code.net) 
• Minimal 
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http://www.cosmologist.info


Planck results 
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Combined CMB map 

15 months of data 
Temperature only 



Planck results 
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CMB map from WMAP (different color scale) 

15 months of data 
Temperature only 



Planck results 
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Combined CMB map 

15 months of data 
Temperature only 



ΛCDM is a very good fit 
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Assuming:  
 
• Neff=3.046 

 
• Minimal neutrino 

masses         
(0.06, 0, 0) eV 



ΛCDM is a very good fit 
Using Planck + WP (= EE +TE from WMAP for l ≤ 23), at 1-sigma: 
 
• Peak scale                         0.060%                    
• Baryon density                   1.3% 
• CDM density                       2.3% 
• Primordial amplitude           2.5% 
• Primordial spectral index    0.76%  
• Reionization optical depth  0.13% 

 
Derived (model-dependent) parameters: 
• Hubble parameter 
• Λ fractional density 
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Excellent agreement with WMAP alone 
 but tension with WMAP+SPT, 

explained as  
WMAP/SPT relative calibration error 

Artificially low 
damping tail 

led to high H0 in agreement with direct  
measurements but in tension with BAO 

600 < l < 1500 



ΛCDM is a very good fit 
Using Planck + WP, at 1-sigma: 
 
• Peak scale                         0.060%                                    BBN consistency:       
• Baryon density                   1.3% 
• CDM density                       2.3% 
• Primordial amplitude           2.5% 
• Primordial spectral index    0.76%  
• Reionization optical depth  0.13% 

 
Derived (model-dependent) parameters: 
• Hubble parameter 
• Λ fractional density 
• Reionization redshift 
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ΛCDM is a very good fit 
Using Planck + WP, at 1-sigma: 
 
• Peak scale                         0.060%                                      BAO consistency:                  
• Baryon density                   1.3% 
• CDM density                       2.3% 
• Primordial amplitude           2.5% 
• Primordial spectral index    0.76%  
• Reionization optical depth  0.13% 

 
Derived (model-dependent) params: 
• Hubble parameter 
• Λ fractional density 
• Reionization redshift 
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ΛCDM is a very good fit 
Using Planck + WP, at 1-sigma: 
 
• Peak scale                         0.060%                              SNIa luminosity tension:      
• Baryon density                   1.3% 
• CDM density                       2.3% 
• Primordial amplitude           2.5% 
• Primordial spectral index    0.76%  
• Reionization optical depth  0.13% 

 
Derived (model-dependent) parameters: 
• Hubble parameter 
• Λ fractional density 
• Reionization redshift 
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ΛCDM is a very good fit 
Using Planck + WP, at 1-sigma: 
 
• Peak scale                         0.060%                     direct H0 measurement tension:           
• Baryon density                   1.3% 
• CDM density                       2.3% 
• Primordial amplitude           2.5% 
• Primordial spectral index    0.76%  
• Reionization optical depth  0.13% 

 
Derived (model-dependent) parameters: 
• Hubble parameter 
• Λ fractional density 
• Reionization redshift 
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ΛCDM is a very good fit 
Using Planck + WP, at 1-sigma: 
 
• Peak scale                         0.060%                            galaxy correlation consistency:                  
• Baryon density                   1.3% 
• CDM density                       2.3% 
• Primordial amplitude           2.5% 
• Primordial spectral index    0.76%  
• Reionization optical depth  0.13% 

 
Derived (model-dependent) parameters: 
• Hubble parameter 
• Λ fractional density 
• Reionization redshift 
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Lensing extraction 
• exaggerated effect of a huge cluster: 

 
• In fact, only 2’-3’ deflections, coherent 

over large scales: invisible by eye 
 

• Lensing potential = projected 
gravitational field (with some kernel: 
sensitive to structures at z~1-3) 
 

• Induces non-gaussianity with very 
specific correlations. Can be extracted 
with specific “quadratic estimator” (= 4-
point correlations) 
 

• Proposed  by Hu & Okamoto (2001) 
First success in 2012 (SPT-ACT) 
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Lensing extraction 
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                                                     Lensing potential map: 
 
 
 
 
 
 
 
 
 
 
Low signal-to-noise, but correlates at high level with different tracers of LSS (20 sigma 
with NVSS quasars, 10 sigma with SDSS LRG, 42 sigma with Planck’s CIB) 



Lensing extraction 
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• Lensing power spectrum consistent 
with ΛCDM 
 

• Helps removing degeneracies and 
measuring extended model 
parameters with Planck alone 

 
 
 
 
 
 
 
 
 



Neutrinos and cosmological perturbations 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

22.05.2013 Planck implications for cosmology – J. Lesgourgues 25 

Gravitational force from neutrino fluctuations felt by: 



Neutrinos and cosmological perturbations 
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Photon density fluctuations 
 before decoupling  

CMB primary anisotropy 
spectrum 

Gravitational force from neutrino fluctuations felt by: 



Neutrinos and cosmological perturbations 
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Photon density fluctuations 
 before decoupling  

CMB primary anisotropy 
spectrum 

Photon momentum  
after decoupling 

CMB secondary anisotropy 
spectrum 

Gravitational force from neutrino fluctuations felt by: 



Neutrinos and cosmological perturbations 
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Photon density fluctuations 
 before decoupling  

CMB primary anisotropy 
spectrum 

matter density fluctuations 
  

LSS [ galaxy / cosmic shear / 
Lyα ] spectrum 

Photon momentum  
after decoupling 

CMB secondary anisotropy 
spectrum 

Gravitational force from neutrino fluctuations felt by: 



Measuring Neff 

• Neff is a parameter for the relativistic  density in general: ωr = [1+0.227Neff] ωγ 

 

• “background effects” (change in expansion history) versus “perturbation effects” 
(gravitational interactions between photons and relativistic species) 

 

• “effect of Neff” depends on what is kept fixed. 
 

• Fixing quantities best probed by CMB (angular peak scale, redshift of equality, …): 
• possible with simultaneous enhancement of radiation, matter, Λ densities, with fixed 

photon and baryon densities  
• then increase in Neff goes with increase in H0: positive correlation between the two 

 

22.05.2013 Planck implications for cosmology – J. Lesgourgues 29 



Measuring Neff 

• Fixing quantities best probed by CMB (angular peak scale, redshift of equality, …): 
      simultaneous enhancement of radiation, matter, Λ densities, with fixed photon and baryon densities  
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unlensed Cl
TT for Neff=3 vs Neff=0 : 



Measuring Neff 

• Fixing quantities best probed by CMB (angular peak scale, redshift of equality, …): 
      simultaneous enhancement of radiation, matter, Λ densities, with fixed photon and baryon densities  
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unlensed Cl
TT for Neff=3 vs Neff=0 : 

Background 
Change in 

diffusion damping 
scale: extra Silk 

damping 



Measuring Neff 

• Fixing quantities best probed by CMB (angular peak scale, redshift of equality, …): 
      simultaneous enhancement of radiation, matter, Λ densities, with fixed photon and baryon densities  
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unlensed Cl
TT for Neff=3 vs Neff=0 : 

Perturbation 
Neutrino free-streaming: 
less gravitational driving 
of acoustic oscillations 

Perturbation  
Neutrino drag: c < cs, 
influence on phase 

of oscillations 

Background 
Change in 

diffusion damping 
scale: extra Silk 

damping 



Measuring Neff 

• Fixing quantities best probed by CMB (angular peak scale, redshift of equality, …): 
      simultaneous enhancement of radiation, matter, Λ densities, with fixed photon and baryon densities  
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unlensed Cl
TT for Neff=3 vs Neff=0 : 

Perturbation 
Neutrino free-streaming: 
less gravitational driving 
of acoustic oscillations 

Perturbation  
Neutrino drag: c < cs, 
influence on phase 

of oscillations 

Background 
Change in 

diffusion damping 
scale: extra Silk 

damping 

+ different lensing 
effect (small) 



Measuring Neff 

• Ultimately, constraints driven by CMB damping tail  
• WMAP+SPT see anomalously low tail: Neff > 3 at 2 sigma 
• Planck and Planck+BAO well compatible with 3.046 at 1 sigma 
• Planck (+BAO) + HST : enforce higher H0, hence also higher Neff  

 
 

22.05.2013 Planck implications for cosmology – J. Lesgourgues 34 

• CMB alone (Planck+WP+HighL) 
 
    Neff = 3.36 ± 0.66   (95%CL) 
 
• With lensing and BAO: 
 
   Neff = 3.30 ± 0.52   (95%CL) 
 
• With H0 and BAO: 
 
   Neff = 3.53 ± 0.46   (95%CL) 
  
   ∆χ2 = -3.6 = -3.3 + 2.0 - 2.8 + 0.4 
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Indirect detection of CNB at 10 sigma 

• CMB alone (Planck+WP+HighL) 
 
    Neff = 3.36 ± 0.66   (95%CL) 
 
• With lensing and BAO: 
 
   Neff = 3.30 ± 0.52   (95%CL) 
 
• With H0 and BAO: 
 
   Neff = 3.53 ± 0.46   (95%CL) 
  
   ∆χ2 = -3.6 = -3.3 + 2.0 - 2.8 + 0.4 



Measuring Neff 

• Ultimately, constraints driven by CMB damping tail  
• WMAP+SPT see anomalously low tail: Neff > 3 at 2 sigma 
• Planck and Planck+BAO well compatible with 3.046 at 1 sigma 
• Planck (+BAO) + HST : enforce higher H0, hence also higher Neff  
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BBN consistency 

• CMB alone (Planck+WP+HighL) 
 
    Neff = 3.36 ± 0.66   (95%CL) 
 
• With lensing and BAO: 
 
   Neff = 3.30 ± 0.52   (95%CL) 
 
• With H0 and BAO: 
 
   Neff = 3.53 ± 0.46   (95%CL) 
  
   ∆χ2 = -3.6 = -3.3 + 2.0 - 2.8 + 0.4 



Measuring neutrino masses 

• Neutrinos contribute to radiation at early time and non-relativistic matter at late 
time: ων= Mν / 94eV.   

• Mν = Σmν > 0.06 eV (NH) or 0.1 eV (IH). At least two non-relativistic neutrinos 
today. 

• If mν < 0.6 eV, neutrinos are relativistic at decoupling. Claim that CMB can only 
probe higher masses is wrong for several reasons. 

• “effect of mν” depends on what is kept fixed. 
 

• Leave both “early cosmology” and angular diameter dist. to decoupling invariant: 
• Possible by fixing photon, cdm and baryon densities, while  tuning H0, ΩΛ  
• then increase in mν goes with decrease in H0: negative correlation between the two 
• “base model” in Planck has (0.06, 0, 0) eV masses: shifts best-fitting H0 by -0.6 

h/km/Mpc with respect to massless case 
 

 
 22.05.2013 Planck implications for cosmology – J. Lesgourgues 37 



Measuring neutrino masses 

• Leaving both “early cosmology” and angular diameter dist. to decoupling  invariant 
 fixing photon, cdm and baryon densities, while  tuning H0, ΩΛ  
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unlensed Cl
TT for two degenerate masses vs massless: 



Measuring neutrino masses 

• Leaving both “early cosmology” and angular diameter dist. to decoupling  invariant 
 fixing photon, cdm and baryon densities, while  tuning H0, ΩΛ  
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unlensed Cl
TT for two degenerate masses vs massless: 

Perturbation 
Not fully 

relativistic before 
decoupling: less 
free-streaming 

and shifting 

Background 
Later M/Λ equality, less 

“late ISW” 



Measuring neutrino masses 
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• Leaving both “early cosmology” and angular diameter dist. to decoupling  invariant 
 fixing photon, cdm and baryon densities, while  tuning H0, ΩΛ  
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unlensed Cl
TT for two degenerate masses vs massless: 

Perturbation 
Not fully 

relativistic before 
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free-streaming 
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Background 
Later M/Λ equality, less 

“late ISW” 

Perturbation 
Feature coming from early 
ISW: φ evolution at non-

relativistic transition 

+ different lensing 
effect 

Mν 
Mν 

mν 

mν 



Measuring neutrino masses 
 
CMB alone (Planck+WP+HighL): 

 
 Σmν < 0.66eV  (95%CL) 

 
With BAO: 

 
 Σmν < 0.23eV  (95%CL) 
  
With lensing: 

 
 Σmν < 0.85eV  (95%CL) 

 
Issue with low l region… 
Robust w.r.t cosmological extensions (excepted for curvature: 50% 
                                                             weakening) 
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Measuring neutrino masses 

• Using SZ cluster count from Planck, issue with bias parameter  
 (bias between hydrostatic and true mass) 
 
… seems to be an issue with systematics 
rather than evidence for neutrino mass  
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Leptonic asymmetry 
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• BBN puts strong bounds on νe chemical potential (neutron to proton conversion) 
and weak bounds on νµ, ντ 

• But flavor oscillations tend to equalize the potential 
 

• Large mixing angle solution with measured θ13:  
      strong BBN bounds on all chemical potentials, 
                                       | nν – nνbar | / nγ < 0.07 (95%CL) 
      leading to  
                                             0 < Neff < 3.5                         Castorina et al. 2012 
 

• Planck not sensitive enough to improve these bounds 



Light sterile neutrinos 
Motivations: anomalies in short-baseline neutrino oscillation experiments 
 
3+1 analysis in 
Kopp et al. 2013 
 
 
 
 
 
 
 
 
Appearance: LSND, MiniBoone, NOMAD, KARMEN, ICARUS, E776 
Disappearance: atmospheric, solar, reactor, Gallium, MiniBoone, CDHS, Minos, KARMEN 
 
 

 
 

22.05.2013 Planck implications for cosmology – J. Lesgourgues 46 



Light sterile neutrinos 
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Light sterile neutrinos 

CMB only (Planck + WP + highL) analysis for 3+1 case: 
 
 
 
Total neutrino density 
in early universe 
 
 
 
 
 
                                                Sterile neutrino density today ωνs 
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Light sterile neutrinos 

CMB only (Planck + WP + highL) analysis for 3+1 case: 
 
 
 
Total neutrino density 
in early universe 
 
 
 
 
 
                                                Sterile neutrino density today ωνs 
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Conclusions 

• No evidence yet for neutrino mass or enhanced neutrino density, although a few 
marginal inconsistency need to be understood: H0 measurements, low l’s, lensing 
spectrum, SZ cluster count 
 

• Neutrino mass remains to be seen by cosmic shear surveys: DES, LSST, Euclid… 
• Safest output of these experiments 
• Scale-dependent suppression of growth factor of matter pertutbations. Importance of 

tomography 
• Sensitivity increased if we can make accurate theoretical predictions on mildy non-

linear scales for power spectrum, bias and redshift space distorsions  
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