

Search for transient neutrino emission from microquasars with the ANTARES telescope

<u>Salvatore Galatà</u> (APC)

GDR neutrino 21-22 05 2013 Paris

ANTARES

- Detector layout:
 - 2500m depth
 - 12 detection lines, 480m height
 - 25 floors per line
 - 3 optical modules (OMs) per floor

- Construction phases:
 - Jan 2007: 5 Lines
 - Dec 2007: 10 Lines
 - May 2008: 12 Lines
- Data for this work:
 - 2007-2010

Microquasars

X-ray binary system compact object & companion star <u>+ relativistic jets</u>

If hadrons are accelerated in the jets, neutrinos may be produced

- Radio emission from jets:
 - Non thermal synchrotron emission
- X-ray emission:
 - soft component from accretion disk (~1keV)
 - hard component(s), from comptonized corona or base of the jets
- GeV/TeV emission: for few of them
- **Time variability:** at different time scales, minutes to months
- ~25 microquasars in our galaxy
- Jet composition still unknown: important for neutrino expectations (hadrons found only in the jets of SS433)

Neutrinos from microquasars

Neutrinos from microquasars

Neutrinos from microquasars

Expected v's from $\mu QSOs$

• Neutrino events expected from the calculations of Distefano et al., (2002) per year of ANTARES data taking, using the model of Levinson and Waxman (2001).

Time dependent analysis

- Microquasars are variable in time:
 - long periods of quiescence (up to years)
 - periods of outburst (days to months) X-rays and radio
- Jets needed for neutrino production
- <u>Restrain neutrino search to periods with radio jets:</u>
 - <u>reduce atmospheric neutrino background</u>
 - increase probability of discovery

<u>Analisys steps:</u>

- 1) Select candidate microquasars and active times
- 2) Search in ANTARES data
 - Data driven background estimation
 - Unbinned likelihood method

Selection of candidate microquasars and active times

Inputs

- **RXTE/ASM**: soft X-rays (1.5-12 keV)
- **Swift/BAT**: hard X-rays (15-50 keV)
- Fermi/LAT: HE gamma rays (30 MeV-300 GeV)
- Literature

Salvatore Galatà, GDR nu, Paris

Time selection: black hole binaries GX 339-4, H1743-322, IGR17091-2436, Cygnus X-1

- X-ray outburst evolution in black hole binaries (disk-jet coupling):
 - 1) Quiescent State no jet \rightarrow
 - 2) Hard State
- → steady jet with F~2
- 4) Soft State
- 3) Transitional states \rightarrow fast discrete ejection with Γ >2
 - → no jet

Time selection: black hole binaries GX 339–4, H1743–322, IGR17091–2436, Cygnus X-1

- Radio jet correlated to:
 - hard X-ray states: slow steady jet
 - hard \rightarrow soft transitions: fast discrete ejection

- Time selection:
 - hard X-ray states: outburst in BAT lightcurve (red areas)
 - transitional states: literature, publications or ATels (green areas)
- Different physical scenarios → apply two separate neutrino searches

Time selection: Circinus X-1 (NS binary)

- Radio jet correlated to:
 - high X-ray flux
 - orbital phase of the system (plot on the right)
- Select high X-ray ASM flux periods (light red)
- Add adjacent periods with expected radio flare: orbital phases [0-0.2] (light purple)

Salvatore Galatà, GDR nu, Paris

Time selection: Circinus X-1 (NS binary)

- Radio jet correlated to:
 - high X-ray flux
 - orbital phase of the system (plot on the right)
- Select high X-ray ASM flux periods (light red)
- Add adjacent periods with expected radio flare: orbital phases [0-0.2] (light purple)

Time selection: Circinus X-1 (NS binary)

- Radio jet correlated to:
 - high X-ray flux
 - orbital phase of the system (plot on the right)
- Select high X-ray ASM flux periods (light red)
- Add adjacent periods with expected radio flare: orbital phases [0-0.2] (light purple)

Salvatore Galatà, GDR nu, Paris

Time selection : Cygnus X-3

- Extract Fermi/LAT light curve:
 - perform basic event selection
 - remove pulses from close-by pulsar PSR 2032+4127
 - get livetime cubes and exposure maps (Pass 6 v11 response)
 - likelihood analysis to get the light curve

- Radio jet correlates to gamma ray outbursts from Fermi/LAT
 - select gamma ray outburst periods
 - add ± 5 days time window to account for radio/γ-ray time lag

Salvatore Galatà, GDR nu, Paris

Search in ANTARES data

The Data set

- ANTARES data taken between 2007 and 2010
 - selected quality runs: 7411
 - livetime: 813 days
- ANTARES data + time cuts \rightarrow 9 data subsets:

source	livetime
Cir X-1 GX 339-4 (HS) GX 339-4 (TS) H1743-322 (HS) H1743-322(TS) IGR J17091-3624	100.5 147.0 4.9 84.6 3.3 8.5
Cyg X-1 (HS) Cyg X-1 (TS) Cyg X-3	$182.8 \\ 18.5 \\ 16.6$

HS=Hard State TS=Transitional State

Likelihood ratio search method

Test statistic definition: $Q = \max_{n_{sig}} \{ \log(L) \} - \log(L)_{n_{sig}=0}$

Salvatore Galatà, GDR nu, Paris

Pseudo experiment generation

- <u>Blind analysis:</u> optimize quality cuts and define discovery conditions before looking at real data
- <u>Data randomization</u> w.r.t. local coordinates of the selected events in data (plots on the right)
- <u>Signal injection</u>: up to 30 signal events per pseudo-experiment around simulated source (PSF)

Pseudo experiment results

- Different test statistic distributions according to injected signals n_{sin}
- Background-only distribution (yellow) used to calculate critical 5σ and 3σ values
- Background-only and background + signal distributions used to calculate the corresponding neutrino flux:
 - $Q \rightarrow \langle n_{sig} \rangle$, through Poissonian convolution of Q distributions

	$\Lambda >$	TS	n_{sig}	livetime	$N_{\nu,bg}$	closest ν	fluence u.l. $^{90\% C.L.}$
Cir X-1	-5.2	0	0	100.5	256	5.7°	16.9
GX 339 - 4 (HS)	-5.2	0	0	147.0	484	2.8°	10.9
GX 339 - 4 (TS)	-5.4	0	0	4.9	14	11 °	19.7
H1743-322 (HS)	-5.2	0	0	84.6	447	4.6°	9.1
H1743-322(TS)	-5.4	0	0	3.3	22	15.9°	30.3
IGR J17091 - 3624	-5.4	0	0	8.5	40	$12~^{\circ}$	21.3
Cyg X-1 (HS)	-5.2	0	0	182.8	675	1.4°	14.1
Cyg X-1 (TS)	-5.4	0	0	18.5	104	6.4°	6.0
Cyg X-3	-5.4	0	0	16.6	149	6.9°	5.7

Comparison with model

90% CL upper limit on the energy flux in neutrinos during the selected periods for a flux:

$$\propto E_{v}^{-2} \cdot \mathrm{e}^{rac{-E_{v}}{100\,\mathrm{TeV}}}$$

compared to the model expectations of Distefano et al., (2002). Cutoff introduced to compare with the model.

Conclusions

- Performed a search for neutrino emission from microquasars with ANTARES 2007-2010 data
- Time cuts were applied to select outbursting periods with radio jets, using information from two X-ray and one gamma ray telescope
- The unbinned likelihood analysis has been optimized for discovery
- Upper limits were obtained on neutrino fluences
- KM3NeT should allow the constraint of model parameters for GX 339–4 and Cyg X-3, within the first years of data taking

BACKUP

X-ray states in black hole binaries

H1743-322

Selection of X-ray outbursts

- Gaussian fit of X-ray rates (histogram on the left)
- Get the *mean* + $3\sigma_{hist}$ (green line)
- Select fluxes "sufficiently above" this level:
 - 1st seed $3\sigma_{\text{fux}}$ above green line
 - Plus adjacent ones $\mathbf{1}\sigma_{_{flux}}$ above

Salvatore Galatà, GDR nu, Paris

Data - Monte Carlo

Full data set: 813 days

Event selection

- Cuts applied for the event selection
 - Λ > -5.0, -5.2, -5.4, -5.6 \rightarrow will optimize discovery potential
 - error estimate <1 degree</pre>
- The number of selected events in each data subset will be used to estimate the background of the corresponding search:

Source		Selected Events						
		$\Lambda > -5.0$	$\Lambda > -5.2$	$\Lambda > -5.4$	$\Lambda > -5.6$			
Cir X-1		139	256	583	1607			
GX 339-4	(HS) (TS)	$\frac{316}{3}$	$\begin{array}{c} 484 \\ 5 \end{array}$	$\begin{array}{c} 956 \\ 14 \end{array}$	$\begin{array}{c} 2609 \\ 45 \end{array}$			
H1743-322	2 (HS) (TS)	283 10	$\begin{array}{c} 447\\ 20 \end{array}$	$746 \\ 27$	$\begin{array}{c} 1817\\90 \end{array}$			
IGR J17091	1 - 3624	10	16	40	120			
Cyg X-1	(HS) (TS)	$\begin{array}{c} 417\\58\end{array}$	$\begin{array}{c} 638 \\ 109 \end{array}$	$\begin{array}{c} 1254 \\ 182 \end{array}$	$3210 \\ 507$			
Cyg X-3		64	93	149	333			

Optimal quality cuts

- Apply cut that minimizes flux needed for a 5σ discovery:
 - looser cut $\Lambda > -5.4$ when livetime < 30 days (left plot)
 - stricter cut Λ >- 5.2 when livetime>80 days (right plot)