

Expected Uncertainties on the Jet Cross Section Measurement in ATLAS I. Vivarelli INFN & University, Pisa

This work is partially supported by the European Commission, through the ARTEMIS Research Training Network, contract number MRTN-CT-2006-035657

Jet Measurements – Truth Definition

- Typically the aim is to test parton level predictions (measure the partons originating the jets)
- The parton level result is "masked" at different levels:
 - theoretical level (everything which leads to the final state particles: ISR/FSR, hadronization, multiple parton-parton interactions, multiple proton-proton interactions)
 - experimental level (detector inefficiencies, non-linearities, resolution)
- The measurement goes through two different steps:
 - Remove the effect of the detector, i.e., measure at best the final state particles: this is a common step of all the possible analysis done with jets
 - Correct the final state objects to get back the parton level
 - The truth jets (particle jets) are those obtained running the same reconstruction algorithm used in the detector on the final state MC particles.

What enters where

 While discussing about Jet Energy Scale we should keep in mind this picture

Introduction - Disclaimer

- Most of the material I am showing is "work in progress":
 - Documented in ATLAS-COM-PHYS-2008-62 P.Francavilla, C.Roda
 - Documented in ATLAS-COM-PHYS-2007-014 T. LeCompte
 - Documented in an ATLAS TWiKi page (public)
- Part of the material is (or will become soon) public in the ATLAS CSC notes.
- Long list people contributing

Inclusive Jet Cross Section

- Physics motivations:
 - interesting per-se
 - Background for <u>all</u> the physics channels
 - Possible signals from physics BSM
- Uncertainties in the theoretical prediction:
 - Renormalization and factorization scale
 - PDF
- Experimental issues:
 - Understanding of the X axis:
 - Jet Scale and resolution
 - Underlying event pileup
 - Understanding the Y axis (jet counting):
 - Jet reconstruction efficiencies
 - Jet trigger efficiencies
 - Luminosity

Inclusive Jet Cross Section (2)

- Up to what scale can we probe with the first data?
 - The statistical error at 1 TeV is 1.2% with 100 pb⁻¹, 0.4% with 1 fb⁻¹
 - This is much lower than other errors

ATLAS MC preliminary

With 1 fb⁻¹ we can measure up to ~2.5 TeV (statistical error ~ theoretical error)

20/06/08 ATLAS MC preliminary

Theoretical Uncertainties

- Two main theoretical uncertainties considered so far:
 - Neglected higher orders (renormalization and factorization scales)
 - PDF uncertainties
- Cross sections evaluated using NLOJET++ (Nucl. Phys. B269 (1986) 445-484) and Pythia:
 - NLOJET can provide the LO and NLO estimate:
 - With consistent choices, Pythia and NLOJET give the same result at LO
 - NLOJET allows only parton level studies
 - NLO cross section with CTEQ6.1, $\mu_f = \mu_r = P_{tmax}$ has been chosen as reference

Theoretical Uncertainties (2)

- Sensitivity of the cross section to the choice of μ_f and μ_r.
 - Define $\mu_{f}, \mu_{r} = \alpha P_{Tmax}$, with 0.25 < α < 4.
 - Let μ_{f}, μ_{r} vary separately and together
 - Compute the ratio $\sigma(\mu_f, \mu_r) / \sigma(\mu_f = P_{\text{tmax}}, \mu_r = P_{\text{Tmax}})$
- ATLAS MC preliminary

- Only jets with 170 GeV <
 P_T < 230 GeV are
 considered in this plot
- The LO is sensitive in particular to μ_r . $\sigma(\mu_r = 0.25P_{tmax}) \sim 2 \sigma(\mu_r = 4P_{tmax})$
- Limited sensitivity of the NLO

Theoretical Uncertainties (3)

 Bands obtained as max and min of the ratio

$$\frac{\sigma(\mu_r = x P_{Tmax}, \mu_f = y P_{Tmax})}{\sigma(\mu_r = P_{Tmax}, \mu_f = P_{Tmax})}$$

$$x,y = 0.5,1,2$$

10

 2×10^3

P_T (GeV/c)

30 40

- The uncertainty is almost independent of P_T above 200 GeV. The numbers are:
 - 7% for the NLO
 - 22% for the LO

20/06/08 ATLAS MC preliminary

Theoretical Uncertainties (4)

Theoretical Uncertainties (5)

 The uncertainty of the PDFs propagates in an uncertainty of the cross section

$$\Delta \sigma = \frac{1}{2} \sqrt{\sum_{i} \left(\sigma(f_i^{max}) - \sigma(f_i^{min})\right)^2}$$

 The error is 2% at 200 GeV and 1 TeV at 13%

ATLAS MC preliminary

Experimental uncertainties

- Several different ingredients enter in the jet cross section measurement at particle level
- Discussed in the following:
 - Jet energy scale and jet resolution
 - Jet trigger efficiencies
 - Jet reconstruction efficiencies
- Not discussed:
 - Luminosity
 - Corrections to apply to the particle level measurement
- The general approach: try to get an estimate of the uncertainties associated with the early data:
 - As much as possible data drive approach to the measurement

Inclusive Jet Cross Section

- Study on the role of the jet scale uncertainty:
 - The ATLAS fast simulation has been used to estimate the error on the cross section due to the jet scale.
 - The response of the ATLAS fast simulation jets is manually shifted by
 - 1% (ATLAS TDR claim)
 - 5% (Optimistic initial ATLAS jet scale)
 - 10% (Pessimistic initial ATLAS jet scale)

- 10% error on the jet scale → 60% error on the cross section @ 1 TeV
- 5% error on the jet scale → 30% error on the jet scale @ 1 TeV

Jet Energy Measurement

- 25% of the jet energy is carried by photons
- 75% of the energy is hadronic

 energy dependent EM
 fraction in the shower
- The ATLAS calorimeters are non-compensating:
 - The response to EM and HAD energy is different
 - The measured jet energy is non-linear with the true jet energy
- The detector has holes and dead material:
 - ~10% of the energy is lost

Jet Energy Measurement (2)

- An event by event correction for the dead material energy loss and fluctuations in the em fraction of the hadronic shower gives an improved jet resolution
- In ATLAS we studied the possibility to correct using:
 - Longitudinal shower development (weights associated to the longitudinal calorimeter samplings)
 - Energy density in the cells (cell level weights depending on the energy density)
 - Cluster level corrections using both the above (local hadron calibration)
- All these quantities are sensitive to the electromagnetic/hadronic fraction of a shower.
- The corrections are usually MC based.

H1 jet corrections

- The total energy is computed as follows: $E_{rec}^{jet} = \sum_{i=cells} w_i (\frac{E_i}{V_i}) E_i$ The weights depend on the cell energy density (and pseudorapidity, through a rough binning)

$$w_i(\frac{E_i}{V_i}) = \sum_{j=0}^3 a_j \log \frac{E_j}{V_i}$$

The weights enhance the response of low energy density cells (Had energy).

High density is associated with EM deposits: the weights go to 1

Some examples

- SU3 sample plots
- SU3 is very different from what has been used to find the calibration constants

Combined Test Beam data

- Estimate the scale bias at day 1 directly from the test beam data:
 - Make use of CTB2004 pion
 - Apply the jet corrections (computed for jets in the ATLAS setup) to the real pions
 - Agreement MC/DATA (before corrections) good:
 - Maximum disagreement ~1-2%
 - After the corrections:
 - Maximum disagreement ~4%

Comments on the Jet Scale

- Corrections to fix the jet scale are in place:
 - Performance tested in a variety of different geometries, physics channels, jet fragmentation, showering model, Combined Test Beam data. .
 - Each of the above introduces uncertainties of the order of few percent (rarely larger than 5%)
 - It looks plausible to achieve ~5% jet scale using the best G4 physics list (QGSP_BERT) with accurate as-built geometry.

In situ verification of the jet scale

Jet Resolution

- Experimental resolution + a steeply falling P_T spectrum → bias in the energy measurement
- Correcting for this requires the knowledge of the jet resolution.
- The di-jet balance method :
 - Define the unbalance in the transverse plane between the leading jets as

$$A = \frac{(E_{TI} - E_{T2})}{(E_{TI} + E_{T2})}$$

It can be shown that $\sigma(E_T)/E_T = \sqrt{2}$ σ_A if $\langle E_{T1} \rangle = \langle E_{T2} \rangle$ and $\sigma(E_{T1}) = \sigma(E_{T2})$, which means balanced jets with uniform resolution 20/06/08

Jet Resolution (2)

- The "true" corrections to the cross section are of the order of 5% at 200 GeV, 3% at 1 TeV
- The "measured" corrections are ~ 8% at 200 GeV, 4% at 1 TeV
- The introduced bias is ~5% at 100 GeV, ~2% at 200 GeV and it decreases with $\rm E_{\tau}$

Jet Reconstruction Efficiencies

- Reconstruction efficiency:
 - Define a ΔR_{match} (choice based on the angular resolution)
 - Match reconstructed jets with truth jets if ΔR < ΔR_{match}
 - The efficiency is the number of matched reco jets/number of truth jets
 - The purity is the number of matched reco jets/number of reco jets

• Both numbers depend on ΔR_{match}

20/06/08

V.Giangiobbe & K.Lohwasser

Trigger efficiencies

- Data drive approach to understand trigger efficiencies.
- Two possible approaches:
 - Start with MB trigger and understand the efficiency of the lowest jet trigger. Iterate
 - Tag and probe:
 - The jet that triggered is the tag
 - The other jets in the event are the probe
 - Efficiency curves obtained matching the probes to the ROIs

Summarizing....

- The dominant error is by far the one on JES:
 - should not be true anymore if the nominal 1% is reached
- Largest theoretical error comes from the PDF uncertainty
- Statistical error, jet resolution, small compared to the JES

Error	200~GeV/c	1 TeV/c
Jet Energy Scale (10%)	43%	57%
Jet Energy Scale(5%)	21%	29%
Neglected higher orders (LO)	22%	21%
Parton distribution functions	2%	13%
Neglected higher orders (NLO)	6%	7%
Jet Energy Scale(1%)	5%	5%
Jet Energy Resolution (20%)	6%	4%
Jet Energy Resolution (10%)	3%	2%
Statistical error $(100 \mathrm{pb}^{-1})$	0.018%	1.2%

What is missing

- The analysis aims to measure the jet cross section at particle level:
 - particle/parton level corrections not studied much:
 - UE correction from MC after its tuning? Event by event subtraction using the energy density? Early subtraction a la D0
 - Hadronization corrections not in place
- At "experimental" level:
 - Uncertainty on the luminosity not estimated
 - Assuming a working detector. Dead cells not in the game (current status ~0.1% dead cells in Lar EM, ~0.8% in Tile (HAD)
 - Statistics available in 2008 basically an unknown (small) number
 - No studies done at 10 TeV

Conclusions

- Jet performance well understood (on simulated events):
 - Good performance in terms of reconstruction efficiencies, jet linearity and resolution
 - Strategies are in place to estimate them from the data
- Inclusive jet cross section measurement:
 - We hope to measure up to $E_{\tau} \sim 1$ TeV with the first 100 pb⁻¹
 - The most relevant experimental uncertainty comes from the jet energy scale:
 - It will be controlled with γ +jets up to ~300 GeV (with 100 pb⁻¹)
 - Scale variations changing material, shower model, physics sample are maximum 5%
 - A direct estimation with real CTB data gives 5% error
- Wating for the data

Jet Measurements – Truth Definition (2)

- The aim: the reconstructed final state is close to that reconstructed from the final state particles (truth):
 - The truth jets (particle jets) are those obtained running the same reconstruction algorithm used in the detector on the final state MC particles.
- Two issues play a role:
 - Jet reconstruction algorithms (how one does cluster particles/calorimeter clusters to get jets)
 - Jet calibration
- What ATLAS uses for the jet reconstruction:
 - Cone algorithm with and without midpoints about to import the SIS cone algorithm from the FastJet (G.Salam et al.)
 - K_{T} different ΔR parameters

Inclusive Jet Cross Section (2)

PDF

- There are quite large uncertainties in the theoretical prediction. The main sources are:
 - Renormalization and factorization • scales
 - PDF uncertainties (evaluated using the LHAPDF)
 - At high energy the high x gluon PDF gives the largest uncertainty

20/06/08

H1 jet corrections

- The weights w_i are the same for all the reco algos, all inputs.
 - They are the same still hard coded for EtMiss reconstruction
- Crack and Gap regions not taken into account in the weight computing. For each reco algo and input clusters, a scale factor is computed:
 - Intended to correct for non-linearities caused by the gap and the crack
 - It corrects also for residual reconstruction algorithm dependent effects

Jet Linearity in FastCaloSim

- Linearity close to 1 in a large range of jet E_τ, in different pseudorapidity regions
- Some 5% deviation observed for Kt6 at low E_τ
- Kt4 and TopoJets not done yet

Uniformity over Pseudorapidity

- Uniformity also very good on all the pseudorapidity range
- Again some 5% deviation for Kt6 at low energy in the central region

Resolution

- The plot is σ(E_{rec})/E_{rec} Vs E_T (need to be fixed in JetPerformance)
- Resolution is a little bit worse in K_τ (known)

Jet Constituents

Getting to TeV-scale jets

Photon-jet balancing tests the JES to 200-250 GeV in early running.

A 500 GeV jet has only ~20% of its energy in particles not probed by γ-jet balancing at 250 GeV. That number increases to ~50% at 1 TeV.

We need a multi-stage process

- Balance low multiplicity jets (a few high p_T particles) with inclusive jets of the same energy (200 GeV)
- Balance γ's against jets at 200 GeV.
- Infer what the extrapolation uncertainty to 1 TeV is. (Looks to be around 15% or 20% of the energy is not directly verified to be calibrated)
- We hope to test this process by looking at 100 GeV jets, and checking with 200 GeV jets (where we have data)

Reconstruction Algorithms

SEEDED CONE ALGORITHM	K _T ALGORITHM		
•Seed: $E_{T} > 1$ GeV in ATLAS	For each cluster pair ij:		
• Cone size \rightarrow ATLAS: $\Delta R=0.7-0.4$	• compute d=	$d_{ii} = k_{T,i}^2$	
 Compute the centroid, iterate until a stable axis is found 	•	$d_{ij} = \min(k_{T,i}^2, k_{T,j}^2) \frac{\Delta R_{ij}^2}{D^2}$	
•Split & Merge: 50% of the more energetic jets	• $\int_{d_{ij}} d_{ij} = \min(k_{T,i}^2, k_{T,j}^2) \frac{\Delta R_{ij}^2}{D^2}$ • If $d_{min} = d_{ii}$ the jet is found D = 0.6, 0.4 • If $d_{min} = d_{ij}$ then cluster i and j together • Iterate		
•The resulting final jet has a (quite) precise geometrical shape			
	 The jet shape is not defined 		
	 No split and merging applied 		
The most used reconstruction algorithm in ATLAS is the seeded cone with			

20/06/08

Reconstruction Algorithms Inputs

- Two preclustering algorithm:
 - Calorimeter towers (ΔηxΔφ=0.1x0.1): no noise suppression (unbiased), finer granularity
 - Topological clusters: no fixed size, sophisticated noise treatment
- Higher noise level in tower jets (as a consequence of the higher number of cells)

Jet Reconstruction Efficiencies

- Reconstruction efficiency:
 - Define a ΔR_{match} (choice based on the angular resolution)
 - Match reconstructed jets with truth jets if ΔR < ΔR_{match}
 - The efficiency is the number of matched reco jets/number of truth jets
 - The purity is the number of matched reco jets/number of reco jets

• Both numbers depend on ΔR_{match}

V.Giangiobbe & K.Lohwasser

Inclusive Jet Cross Section (3)

- The uncertainty on the jet energy scale is the dominant experimental uncertainty:
 - 10% error on the energy at 1 TeV means 50% error on the cross section

• Experimental resolution + a steeply falling P_{τ} spectrum \rightarrow bias in the energy measurement