

LINEAR COLLIDER COLLABORATION

Jérôme Baudot pour le groupe PICSEL de l'IPHC-Strasbourg iphc.cnrs.fr/PICSEL

Journée Collisionneur Linéaire, Lyon 13–14 juin 2013

- Context of the Vertex Detector
- ▶ R&D on sensing tech.: CMOS Pixel Sensors (CPS)
- R&D on system integration
- R&D on tracking
- Summary & Conclusion

Context of the Vertex detector

Known specifications

- Impact parameter resolution $\sigma_{R\phi,Z} \leq \left(5 \oplus \frac{10}{p \sin^{3/2}(\theta)}\right)$ Translate for each 3D measurement into μm
 - - $\sigma_{\rm s.p}$ ~3 $\mu{\rm m}$ and material budget 0.15 % X₀ first measurement at radius ~ 16 mm
- Beam background handling ~ 5 hits/cm²/BunchX
 - Translate into: either "fast" integration to limit #hits/frame either "extreme" granularity to individualize hits
- Various potential technology optimisations
 - Analysis performances = sole and final figure of merit
 - Tracking performances provide indications

Open questions

- Uncertainty on beam background
 - Support fast read-out
- Major tracking difficulty for $p_{T} \lesssim 1$ GeV/c
 - No satisfactory silicon standalone algorithm
- Baseline geometry = 3 double-layers
 - Alternative = 5 single-layers
 - no clear indication for a choice, yet

R&D on sensing technology: CMOS Pixel Sensors

- Current achievements with CPS
- Proposed VTX with CPS
- Ongoing developments

Current achievements

Problematic

CMOS Pixel Sensors

- Industrial technology
- Monolithic = combination of
 - Sensitive volume & sensing node
 - Signal treatment
 - Analogue (amplification)
 - Mixed Analogue-Digital (conversion)
 - Digital (zero-suppression, transmission)
- Complete detection system
 - → to be optimized / applications

State of the art solution

- Rolling-shutter readout
 & column level discrimination
- MIMOSA 26/28
 - AMS 0.35 µm process

Applications

- EUDET beam telescope and many avatars
- STAR-PXL
 - 3 sectors installed on 8 May 2013
- Calorimetry
- Hadrontherapy

STAR-PXL installation in 1 day

Example of proposed VTX with CPS

ILC √s		500 GeV			1 TeV			
Layer	Radius	$\sigma_{ m s.p}$	† _{int}	Sensor / digitazion	$\sigma_{ m s.p}$	† _{int}	Sensor / digitization	Power diss. average
1-inner	16 mm	3 µm	50 µs	MIMOSA / binary	Idem			
1-outer	18 mm	6 µm	10 µs	AROM / binary	6 µm	2 µs	AROM-1 / binary	5 W
2-inner	37 mm	4 µm	100 µs	MIMOSA / 4-bits adc	Idem			2 ()) (
2-outer	39 mm	4 µm	100 µs	MIMOSA / 4-bits adc	10 µm	7 µs	AROM-2 / binary	2.4 W
3-inner	58 mm	4 µm	100 µs	MIMOSA / 4-bits adc	Idem			
3-outer	60 mm	4 µm	100 µs	MIMOSA / 4-bits adc	10 µm	7 µs	AROM-2 / binary	4 VV
OSA: colu	.mn-level	digitiza	tion		Air	cooling	compatible -	1

Air cooling compatible ———

Vertex Detector for ILD: R&D at IPHC, JLC - June 2013

AROM: pixel-level digitization

Applications driving the R&D

- ALICE Internal Tracking System: 50 μ s with 4 μ m and 10⁷ hits/cm²/s
 - Require readout acceleration
- AIDA Single Arm Large Area Telescope: Sensor sensitive area \approx 25 cm²
 - **Require** stitching
- **CBM Micro-Vertex Detector**
 - Require acceleration & radiation tolerance

Advanced functionalities

- MIMOSA-32/34: further optimisation of q-collection, noise, ampli.
- MIMOSA-22-THR: pixel matrix + col-level discriminators
 - single and double rows read-out
- SUZE-02: zero-suppression circuitry -
- AROM-0: matrix with in-pixel discriminator
- MIMADC: matrix with in-pixel 3-bits ADC

Full Scale Basic Blocs (FSBB)

- = complete functionality over $\sim 1 \text{ cm}^2$
- Q4/2013: col-level discri. approach (→MISTRAL)
- Q4/2015: in-pixel discri. approach (→ASTRAL)

Final sensors

- Q4/2014: MISTRAL 22x33 µm2 pitch with 30 μ s integration time (15 μ s possible)
- Q4/2016: ASTRAL 15 μ s integration time (2 μ s possible)
- 2015: AIDA large area $(4 \times 6 \text{ cm}2)$ beam telescope sensor

Upgrading the technology

- Change from to Tower-Jazz 0.18 µm CIS 2D process
- First validation in 2011-2012: see Auguste Besson's talk

Ongoing evelopments

0-suppression stage

R&D on system integration

- Double-sided ladders
- The PLUME project
- Beam test results

Rationale for double-sided ladders

Mechanics

- ▶ One support for 2 sensitive layers ⇒ benefit material budget hence resolution
- Safety
 - ▶ Hit redundancy ⇒ benefit efficiency

Technology

► Mixing 2 different sensor optimizations ⇒ alleviate technology limitation

Alignment

► Additional geometric constraints ⇒ benefit #tracks needed for a given precision

Tracking

- ▶ 2-hits make a mini-vector ⇒ additional angular information
 - ➡ improve hit-track association

The PLUME project

Collaboration with

- DESY + University of Bristol
- Formerly with University of Oxford

▶ Previous achievements ≤ 2012

- Ladders with material budget 0.6 % X₀
 - Full VTX inner layer geometry
- Operated with air cooling on beam test
- Operation with power pulsing in preparation (single sensor achieved)

Moving toward final goal

- ▶ Expected material budget 0.35 % X₀
 - Lighter (alu) flex cable & mechanical support
 - Two flex designs for symmetry and final ladder geometry
- Readiness
 - First cables validated, rest to be produced
 - New assembly setup in production
 - First ladder by end of summer 2013

Vertex Detector for ILD: R&D at IPHC, JLC - June 2013

Beam test results on Ladder

- Beam test with 120 GeV π in November 2011
 - → efficiency > 99% for fake hit rate<10⁻⁴/pixel
 - → σ(point)≃3 μm
 - → σ(angle)≃0.1°
 - Analysis ongoing / alignment & cracks

Further beam test

- With next 0.35% X0 prototype
- Power pulsing in magnetic field
 - Check impact Lorentz forces

11955 703.6/44 air outlet, cable out

air inlet

R&D on tracking

- Alignment studies
- Setup and simulation
- Tracking studies

Alignment studies

Context

- Thesis of Loic Cousin (2010–)
- PLUME prototypes
- AIDA EU-project
- Alignment Investigation Device

Layer auto-alignment

- Extrapolate mini-vectors to ladder on the other side of same layer, in ladders overlap area
- Very preliminary results
 - recover 100 µm shifts + 2 deg rotations
 with 10k mini-vectors at 1µm level
- Still no beam background included
- Extension to "layer to layer" alignment ?
- Competitive wrt global strategy using tracks ?

Setup for alignment studies

Single Arm Large Area Telescope

- > SALAT (AIDA WP 9.3)
- Demonstrator = 4 MIMOSA-28 sensors thinned to 50 µm mounted on a Mylar sheet
 - 1st sample May 2013
 - Complete arm (3 samples) Q1/2014
- Final sensor = MIMAIDA 4x6 cm² 2015

Alignment Investigation Device

- Downscale from a large box including 3 layers to three small supports
- Dedicated mechanics (Bristol)
 for 2 PLUME ladders: July 2013

Simulation for alignment studies

CPS response

- Ad-hoc model based on charge spread functions
- Parameterization from beam test
 - Validated for techno 0.35 μm
 - In progress for techno 0.18 μ m

Geometry

- Detailed description of PLUME ladders
 - 8 Mpixels / ladder
 - Full response simulated
- Several arrangements including
 - Target (for vertex generation)
 - Telescope arm upstream target
 - Layers with overlapping ladder downstream target

Examples of simulated AIDA-like setup

Tracking studies

Context

- Thesis of Yorgos Voutsinas (def.2012)
- Collaboration with
 - > Y.Voutisnas fellows at DESY (2013-2015)
 - New thesis starting this Fall 2013 at DESY
- Simulation studies
 - DBD-style detector

Silicon standalone tracking

- The problem at low p_T is track-seeding
 - > 3 real 3D hits needed
- With current strip-SIT configuration
 - Either not efficient enough 80% at p_T 500 GeV/c
 - Either two slow (270 s /event) when considering all combinations
- Pixelated-SIT with 2 double-layers option
 - > Offers 4 3D hits & mini-vectors
 - > Cellular automaton algorithm under evaluation

- ▶ Track extrapolation TPC→SIT→VTX
 - Impact of pixelated-SIT (double-layers)

	st	rip	pixel		
	$\sigma_{ m s.p.}$ (μ m)	t _{int} (µs)	$\sigma_{ m s.p.}$ (μ m)	t _{int} (µs)	
SIT - 1	7(<i>R</i> -φ)	< † _{BunchX}	4/15	100/7	
SIT - 2	50 (<i>z</i>)		4	100	

► Efficiency TPC→SIT strips > pixels

- Benefit of short t_{int} / beam Background
- ► Efficiency SIT→VTX similar / both options
 - BUT pixel timestamping layer mandatory

Summary & Conclusion

R&Ds ongoing at IPHC

CMOS pixel sensors

development driven now by ALICE (9 m²) for 2015, AIDA for 2015 and CBM for 2018 ILC spec reachable \leq 2015, CLIC goals more demanding (another technology upgrade)

System integration

generic project PLUME with ILC-oriented issues

Specific applications: STAR, ALICE, CBM ; developed by collaborations

Alignment and Tracking

Major steps for assessing benefits of a given technology and double-sided ladders

From the past ten years

CPS are an R&D generated by ILC Spin-off for

Subatomic physics Other domains (photon-camera, hadrontherapy, dosimetry, ...)

For the ten coming years

- Further progress of CPS expected, industrial technology moving forward
- Further applications also opened up by integration progresses

BACKUPS

Baseline CPS status

0.35 µm CMOS process

MIMOSA 30

Inner layer

- > 2 sided readout ($t_{r.o.}$ /2 for same sensitive area) with different pixel/side
- Prototype dimension: column length ~ final sensor
- > High spatial resolution side:
 - ▶ Pitch 16x16 μ m² → t_{r.o.} \lesssim 50 μ s and expected $\sigma_{\rm s.p.} \lesssim$ 3 μ m
- Time stamping side:
 - ▶ Pitch $16 \times 64 \mu \text{m}^2 \rightarrow t_{\text{r.o.}} = 10 \ \mu \text{s and expected } \sigma_{\text{s.p.}} \approx 3.5 \ \mu \text{m}$
- Beam tests June 2012 for 16x16 μ m²:

▶ Noise ~ 16 ENC

 \bullet $\sigma_{\rm s.p.} \simeq 3.0 \pm 0.1 \ \mu {\rm m}$

Outer layer

- MIMOSA 31
 - Column width = ADC width
 - 48 columns of 64 pixels with 35x35 μ m²
- Column-level digitization
 - ► 4-bits ADC
 - expected $\sigma_{\rm s.p.} \simeq 3.5 \ \mu {\rm m}$

The SERNWIET project

Double-sided ladder tracking

