SDHCAL Micromegas Activités présentes et futures

M. Chefdeville pour le groupe Micromegas du LAPP, Annecy

Journées collisionneur linéaire, IPN de Lyon, 13-14 Mai 2013

Sommaire

• Groupe LAPP/Micromegas : état des lieux

- Analyse : étude des performances d'un SDHCAL
 - Simulation Monte Carlo
 - Données de tests sur faisceau

- R&D : protection contre les étincelles
 - Micromegas résistifs

Projet SDHCAL/Micromegas : état des lieux

Chronologie

- 2006-2009 : petits prototypes 100 cm^2
- 2009-2012 : grand prototypes $1 x 1 \ m^2$

Bilan

<u>Quatre prototypes de 1x1 m² construits et testés</u> sur les faisceaux du CERN/SPS + DAQ CALICE intermédiaire compatible RPC et Micromegas

- \rightarrow beaucoup de mesures effectuées hors et dans le SDHCAL
- \rightarrow bonne compréhension des grands prototypes Micromegas

Futur

L'IN2P3 ne supportera pas le coût d'un SDHCAL Micromegas (50 plans). + les décisions concernant la construction d'un futur LC se font attendre.

- → Terminer l'analyse des données Micromegas et publier les résultats (1 article soumis à NIM en avril)
- → Approfondir la compréhension du SDHCAL : réponse, résolution en énergie, corrections multi-seuils...
- → Simplification du dessin des chambres pour baisser les coûts

Approfondir la compréhension du SDHCAL

1. Modèle du SDHCAL dans Geant4

2. Mesure de l'énergie des hadrons (pions) à partir du nombre de hits (Monte Carlo)

Distributions du nombre de hits Fraction électromagnétique Reconstruction de l'énergie du hadron Résolution en énergie

3. Utilisation de l'information multi-seuils (Monte Carlo)

Étude à 2 seuils

4. Données de test sur faisceau et calibration des chambres

Réponse du SDHCAL aux pions Importance de la calibration

Modèle du SDHCAL

100 détecteurs de 1x1 m² (~10 λ_{int})

Milieu passif: 17 mm d'<u>acier</u> (absorbeurs et détecteurs) Milieu actif: 3 mm d'<u>argon</u> Segmentation en damiers de 1x1 cm²

Simulation

Geant4 version 4.9.5 Physics list QGSP_BERT Statistique : 10⁴ pions par énergie Énergie : 5, 10, 20... 70 GeV

Début de gerbe et fraction électromagnétique

Localisation de la 1^{ere} interaction inélastique nucléaire $\rightarrow z_0$

Identification mésons neutres et particules filles \rightarrow EM visible energy

Conversion énergie (keV) \rightarrow hits (N0, N1, N2) Seuil bas = 1 e⁻ primaire (~15 eV) Seuils milieu et haut des tests sur faisceau : 5 and 15 MIPs La MIP est déterminée grâce à un échantillon de muons ~ 1.8 keV

Distribution du nombre de hits

Saturation géométrique du DHCAL

La distribution du nombre de hits développe une queue à gauche lorsque l'énergie du hadron dépasse 30 GeV A une énergie donnée, <u>le nombre de hit dépend de la fraction d'énergie électromagnétique f_{EM} </u> L'énergie électromagnétique est déposée de manière très localisée

→ la saturation dépend du rayon de molière (matière des absorbeurs) et de la taille des damiers (détecteurs)

Reconstruction de l'énergie du hadron

Moyenne du nombre de hits, 2 approches

- 1. Moyenne et RMS de la distribution \rightarrow les queues (et donc la saturation) sont prises en compte
- 2. Ajustement d'une gaussienne asymétrique à la distribution \rightarrow l'effet de la saturation est atténué (dN/N~5 % @ 70 GeV)

La saturation est une propriété du DHCAL \rightarrow approche 1

Réponse du DHCAL aux pions

Réponse = rapport entre le nombre de hit moyen et l'énergie incidente = constante pour un HCAL compensé (e/h = 1) Pour le DHCAL (e/h < 1), la réponse diminue avec l'énergie car f_{EM} augmente

Réponse bien décrite par une fonction log : $N = p_0 / p_1 * log(1 + E * p_1)$ Réponse du DHCAL sans saturation: $p_1 \sim 12.8 \text{ hit / GeV}$ Reconstruction de l'énergie : $E = (exp(N * p_1 / p_0) - 1) / p_1$

Résolution en énergie

Conclusions

La linéarité est excellente (comme attendu)

La résolution se dégrade au delà de 30 GeV (saturation)

 \rightarrow La résolution n'est pas décrite par la somme quadratique d'un terme stochastique (E^{-1/2}) et d'un terme constant.

Reconstructed pion energy - pure digital

Ebeam (GeV)

Méthode de compensation avec 2 seuils

Reconstruction de l'énergie avec 2 seuils (Nhit > thr_0 \rightarrow N₀ et Nhit > thr_1 \rightarrow N₁)

 $E_{rec} = A (N_0 + B.N_1)$ avec <u>A une constante en GeV/hit et B un paramètre dépendant de l'énergie du hadron</u> La constante A est donnée par la réponse du calorimètre en mode pur digital : <u>A = 1/12.77 = 0.078 GeV/hit</u> B est déterminé de manière à obtenir $E_{rec} = E_{beam}$

B est d'abord calculé événement par événement : B = $(E_{beam}/A - N_0)/N_1$

On prend enfin la valeur moyenne de B, pour chaque énergie

Dispersion importante de B à chaque énergie mais comportement presque continu VS Ebeam

Résultats avec 2 seuils à 0.1 et 5 MIP

« A l'ILC », Ebeam n'est pas connu, on peut toutefois utiliser une paramétrisation de B en fonction de N1

Performance avec <u>thr₀ ~ 0.1 MIP et thr₁ = 5 MIP</u>

La linéarité (calculée comme $(E_{rec} - E_{beam}) / E_{beam}$) est de ± 2% (sauf à 10 GeV : - 3%)

Amélioration de la résolution en énergie : <u>13 % (1 seuil) \rightarrow 11 % (2 seuils) à 30 GeV et 17 \rightarrow 12 % à 70 GeV</u>

Après compensation, la saturation se manifeste vers 40-50 GeV \rightarrow et avec un seuil thr₁ plus élevé ?

Résultats avec 2 seuils à 0.1 et 15 MIP

Erec = A (N0 + C.N2)

A est toujours fixé à 0.078 GeV/hit et le paramètre C donné par $(E_{beam}/A - N_0)/N_2$

Le poids C varie de 2.0 à 20 GeV à 5.0 à 70 GeV et est également décrit comme une fonction log de N₂

Performance avec <u>thr₀ ~ 0.1 MIP et thr₁ = 15 MIP</u>

La linéarité est légérement meilleure que dans la configuration (0.1-5) MIP : $\pm 1 \%$

Amélioration importante de la résolution en énergie : <u>9% at 70 GeV contre 17% en mode pur digital</u>

Données de tests sur faisceau du SDHCAL : coupures

Période de tests sur faisceau: Août-Septembre 2012, ligne H6 du SPS au CERN

Données

> 10k pions à 20, 25, 30, 40, 50, 60, 70, 80, 90, 100 GeV

« Containment cut »

 \rightarrow Départ de la gerbe dans les 12 l^{er} plans

(Une coupure sur le nombre de hits dans les dernières couches biaiserait l'échantillon de pions \rightarrow à éviter)

« Particle ID cut »

Le SDHCAL est ~ compensé entre 5 et 15 GeV

 \rightarrow Séparation électron/hadrons ne peut se faire sur le nombre de hits

 \rightarrow Information spatiale des gerbes : Barycentre en XY (transverse) et suivant Z (longitudinal)

Données SDHCAL : performance de 15 à 30 GeV

Résultats préliminaires

Réponse du HCAL aux pions : dispersion importante des points expérimentaux de 15 à 110 GeV.

Le domaine en énergie de 15 à 30 GeV est bien décrit par la fonction log. (20.21 hit / GeV)

- \rightarrow linéarité < ± 2 %
- \rightarrow la résolution en énergie s'améliore jusqu'à 25 GeV

Données SDHCAL : prochaines étapes

Comprendre l'origine de la dispersion des points expérimentaux Dispersion observée pour les 3 seuils

- * Vérifier les réglages du faisceau dans les données (taux de gerbe hadronique en principe < 10 Hz)
- * Étudier la réponse de chaque RPC
- \rightarrow Carte des trois seuils
- → Efficacités et multiplicité pour les muons traversants
- \rightarrow Constante de calibration par chambres ?

* Finalement : étude du multi-seuils

R&D présente et future : Micromegas résistifs

Les prototypes Micromegas de 1x1 m² fonctionnent très bien (cf. talk *Etudes en faisceau: HCAL pour SiD*).

Leur construction reste toutefois coûteuse: <u>6 grilles / m^2 + plusieurs composants sur PCB pour protéger</u> <u>les ASIC des étincelles</u>

→ remplacement de ces composants (diodes) par une couche résistive sur le plan de damiers

Simulation pour comparer les configurations résistives à celle standard

R&D présente et future : Micromegas résistifs

Prototypes pour étudier les phénomènes liés aux couches résistives

Charge d'espace

<u>Perte de proportionnalité</u> (gain max ?) <u>Perte de tenue en flux</u> (flux max?)

Étalement de la charge sur les damiers Augmentation de la multiplicité

Ces effet dépendent de la configuration résistive

- \rightarrow Prototypes de 16x16 cm²
- \rightarrow Tests sur faisceau à DESY en Juillet

Conclusions

- En attendant un signal fort de la communauté internationale sur la construction d'un futur LC, nous poursuivons :
 - un travail d'analyse de données des détecteurs Micromegas et RPC (Monte Carlo et tests sur faisceau) ;
 - un travail de R&D sur les protections contre étincelles
- Étude des performances d'un SDHCAL (principalement par simulation)
 - Monte Carlo : Saturation de la réponse mais amélioration importante de la résolution avec 2 seuils
 - Analyse des données de tests sur faisceau plus difficile et en cours
- Protection contre les étincelles intégrée dans le détecteur
 - Premiers prototypes en cours de fabrication \rightarrow test sur faisceau en Juillet
- En 2014 et selon les financements
 - Définition d'un nouveau dessin de grande chambre avec une seule grille Micromegas
 - Adoption des nouvelles protections sur ce grand prototype
 - Test sur faisceau au CERN en 2015