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• The mass is the most significant characteristic of a cluster : 

➡ all the cluster physics depend on it

• It is strongly correlated to the other physical parameters:

• gas mass

• temperature

• X-ray luminosity

• SZ signal

• number of galaxies

• peculiar velocities...

• Unfortunately, it cannot be directly observed
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4 Arnaud et al.: The M − T relation

Table 2. Results of power law fits to the Mδ–T and Rδ–T relation at various density contrasts δ. The data are fitted with a power
law of the form h(z)Mδ = Aδ × (kT/5 keV)α and h(z)Rδ = Bδ × (kT/5 keV)β, where kT is the overall spectroscopic temperature
of the [0.1R200 − 0.5R200] region. A ΛCDM cosmology is assumed: Ωm = 0.3, ΩΛ = 0.7, and H0 = 70 km/s/Mpc.

Mδ–T relation Rδ–T relation
δ Aδ (1014 M#) α σlog,raw σlog,int χ2(dof) nhp Bδ (kpc) β

Whole sample
200 5.34± 0.22 1.72± 0.10 0.077 0.051 14.49(8) 0.07 1674±23 0.57±0.02
500 3.84± 0.14 1.71± 0.09 0.064 0.039 12.65(8) 0.12 1104±13 0.57±0.02
1000 2.82± 0.09 1.71± 0.08 0.053 0.027 10.74(8) 0.22 791±8 0.57±0.02
2500 1.69± 0.05 1.70± 0.07 0.041 0.016 9.33(8) 0.32 491±4 0.56±0.02
T > 3.5 keV
200 5.74± 0.30 1.49± 0.17 0.081 0.064 10.45(4) 0.03 1714±30 0.50±0.05
500 4.10± 0.19 1.49± 0.15 0.064 0.046 8.34(4) 0.08 1129±17 0.50±0.05
1000 3.00± 0.12 1.49± 0.14 0.048 0.027 5.91(4) 0.21 807±10 0.50±0.04
2500 1.79± 0.06 1.51± 0.11 0.025 - 2.50(4) 0.65 500±5 0.50±0.03

Columns: (1) Density contrast δ; (2, 3) Intercept and slope for the Mδ–T relation: h(z)Mδ = Aδ × (kT/5keV)α with standard errors; (4, 5)
Raw and intrinsic scatter about the best fitting relations in the log-log plane (see Sec. 3.2); (6) Chi-squared and degree of freedom; (7) Null
hypothesis probability associated with the best fit; (8,9) Intercept and slope for the Rδ − T relation: h(z)Rδ = Bδ × (kT/5keV)β;

T > 3.5 keV), and fitted the M2500–T relation using a power
law model of the form:

h(z)Mδ = Aδ
[

kT
5 keV

]α

. (2)

Here and in the following, the fit is performed using linear re-
gression in the log–log plane, and the goodness of fit is calcu-
lated using a χ2 estimator taking into account the errors on both
mass and temperature. We used the routine FITEXY from nu-
merical recipes (Press et al. 1992). Note that, as in the study
of Allen et al. (2001), the masses are scaled by h(z), which
corrects for the evolution expected in the standard self-similar
model. This scaling factor is small in our z range (h(z) = 1.07
at z = 0.15) but varies between ∼ 1.05 and ∼ 1.28 for the
Chandra clusters located at higher redshifts (0.1 < z < 0.46).

The data are well fitted by a power law (χ2/dof = 2.5/4).
The slope, α = 1.51 ± 0.11, is perfectly consistent with the
expectation from the standard self-similar model, and with the
results from Chandra observations (α = 1.51 ± 0.27). The de-
rived normalisation, A = (1.79 ± 0.06) × 1014 M#, is also con-
sistent with the Chandra normalisation (see Table 3). As noted
by Allen et al. (2001), such a normalisation is discrepant with
the value derived from numerical simulations including grav-
itational heating only: our measured value is about ∼ 30 per
cent below the prediction of Evrard et al. (1996). When the
Chandra data for 4 of the 5 clusters studied by Allen et al.
(2001) are added to the present data set3, the best fitting val-
ues are almost unchanged (α = 1.52 ± 0.1 with the same inter-
cept). This is due to the larger uncertainties in theChandra tem-
perature and mass determinations compared to those measured
here (see Fig. 2). Figure 2 shows the best fit for the combined
XMM-Newton and Chandra data compared to the expecta-
tions from the adiabatic numerical simulations of Evrard et al.
(1996).
3 The fifth cluster is PKS 0745-191, which is common to both sam-

ples. We use only the XMM-Newton measurement here.

Fig. 2. TheM−T relation at δ = 2500 as seen by XMM-Newton
from the observation of 6 hot (kT > 3.5 keV), relaxed clus-
ters. Filled squares show the XMM-Newton data points; the full
line shows the best fitting power law. The data on 4 published
Chandra clusters (triangles) have been added to the fit but due
to their larger uncertainties, they do not change the parameters
of the fit to the XMM-Newton data only (see text). The dashed
black line is the prediction from adiabatic numerical simula-
tions (Evrard et al. 1996).

Still working at δ = 2500, we performed a fit over the
whole XMM-Newton sample, i.e. now including the four low
mass systems. We obtain α = 1.70 ± 0.07, and a normalisation
A = (1.79 ± 0.06) × 1014 M#. The fit is acceptable, although
formally less good (χ2/dof = 9.33/8). The slope now differs
significantly from the expected value of α = 1.5, and is just
barely consistent with it at a 3σ level. This is further discussed
in Sec. 6.2.

G. W. Pratt et al.: X-ray luminosity scaling relations of the REXCESS 369

Fig. 6. L–M500 relation for the REXCESS sample, with the mass estimated from the YX–M relation of Arnaud et al. (2007). Left: relation for all
emission interior to R500. Centre: relation for emission in the [0.15–1] R500 aperture. The best fitting power law relation derived from the orthogonal
BCES fit method is overplotted as a solid line. The dashed line is the fit derived by Maughan (2007) from observations of 115 galaxy clusters in
the Chandra archive. Right: relation corrected for Malmquist bias as described in Appendix B.

interpretation of data from the upcoming all-sky surveys from
the Planck and eROSITA satellites.

The L1–YX relation, where the luminosity is derived from
all emission interior to R500, is shown in Fig. 4; the best fit-
ting power law values are given in Table 2. Because of the
smaller scatter in these data, both BCES fitting methods give
consistent results. Our relation is in good agreement with that of
the Chandra archive study of 115 galaxy clusters by Maughan
(2007): the slope B = 1.10 ± 0.04 is consistent with our BCES
orthogonal value, α = 1.04 ± 0.06, and the normalisation at
YX = 2 × 1014 M" keV is only 14 per cent lower than ours. The
intrinsic logarithmic scatter is σln L = 0.38 ± 0.06, considerably
less than about the L–T relation (note that since YX is calculated
using the temperature estimated in the [0.15–1] R500 aperture,
this will tend to damp scatter somewhat). However, the residual
histogram about the best fitting orthogonal BCES relation, plot-
ted in the central panel of the same figure, has a KS probability
of only 0.09 of being compatible with a Gaussian distribution.

The residual distribution for the different subsamples mirrors
that of the L1–T1 relation: cool core clusters lie preferentially
above and morphologically disturbed systems lie preferentially
below. This fact is reflected in the different normalisations found
when fitting the different subsamples: the cool core systems have
the highest normalisation and the disturbed systems the lowest.
However, the slope of the relation, when fitted to different sub-
samples, is remarkably stable at 0.96–1.06, and the slopes of all
subsamples are statistically indistinguishable.

Figure 5 shows the L2–YX relation, determined with the core
emission excluded. Once again there is excellent agreement in
both slope and normalisation between our relation and that of
Maughan (2007). The relation is very tight: the intrinsic loga-
rithmic scatter is only σln L = 0.16±0.04, and the KS probability
that the distribution of residuals is compatible with a Gaussian
is 0.93. For the different subsamples, Table 2 shows that the
slopes are remarkably similar, ranging from 0.94 to 0.99, and the
power law normalisations for the best fitting models are segre-
gated in a similar manner to the luminosity temperature relation,
although with much reduced significance.

3.4. The L–M500 relation

It is interesting to make a first examination of the slope and nor-
malisation of the L–M500 relation for the present sample. Since

we do not have independent measures of the mass, we use the
M500–YX relation of Arnaud et al. (2007) to estimate the masses
of the clusters in the sample. For the purposes of this initial in-
vestigation, we ignore the impact of the intrinsic scatter about
the M500–YX relation because it is at present not sufficiently well
quantified; X-ray calibrations are necessarily available for re-
laxed cluster samples only, and weak lensing calibrations are at
present lacking sufficient dynamic range in mass. The present
approach allows us to verify the slope and normalisation of the
relation under the given assumptions, to check the coherence
of the slopes, and to compare with previous work using similar
approaches.

The measured L–M relations are summarised in Table 2 and
the relations obtained for bolometric L measured in both aper-
tures are plotted in Fig. 6. The slopes of the relations, ∼1.8,
are consistent with the L–T and M500–YX relations, as expected.
Comparing our measurements of the slope and normalisation
with those of Maughan (2007), we find excellent agreement in
slope for the relation derived from all emission interior to R500,
athough our normalisation is somewhat higher (by <20 per cent).
When the core emission is excluded, the slope of Maughan’s re-
lation (1.63 ± 0.08) is somewhat shallower than our BCES or-
thogonal measurement (1.80± 0.05), at the ∼2σ level. However,
the normalisations are in excellent agreement.

In the right hand panel of Fig. 6 we compare the raw
L–M relation with that corrected for the effect of Malmquist
bias. The correction procedure, and the relations for the [0.1–
2.4] keV and [0.5–2] keV bands, plus comparison with the re-
sults of Vikhlinin et al. (2008), are given in Appendix B. The
correction has the effect of steepening the relation slightly due
to the under-representation of low-luminosity clusters on the
REXCESS sample.

The scatter is, by definition, identical to that about the
L–YX relation, and is in excellent agreement with that found by
Vikhlinin et al. (2008) from a similar analysis of a larger flux-
limited sample of nearby clusters. Note that if L ∝ Mγ, then
a first order estimate of the scatter in mass is σln M ∼ σln L/γ.
However, this will only be true if σln L is measured at fixed M for
a complete sample. Using the measurement of σln L at fixed T or
YX introduces covariance of T and YX into the relations, which
would modify the first order scatter estimate. Nevertheless,
the scale of this first order estimate of the scatter in mass is

Pratt et al. 2009

Arnaud et al. 2005
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• Galaxy clusters are powerful cosmological probes, sensitive to 
both cosmic expansion and growth

• Among other methods, cluster counts as a function of redshift 
and/or mass allow to produce cosmological constraints

Borgani (2006)
Cosmology-dependent mass function
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The Planck satellite observed (and, in many cases, discovered) a 
great number of massive and distant clusters.

➡ 1227 Planck clusters and candidates over 83.7% of the sky

A cosmological sample was constituted (100% purity and redshift 
measurements) in order to derive cosmological constraints.

4

Planck collaboration (2013)
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... but its relatively low resolution (∼cluster size) leads to weak 

constraints of their size/flux if no other constraint is used (e.g. 
from X-ray observations)

5

Variation of the SNR with 𝛳500 and resulting Y500 imprecision
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... but its relatively low resolution (∼cluster size) leads to weak 

constraints of their size/flux if no other constraint is used (e.g. 
from X-ray observations)
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Planck coll. 2013
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How is mass computed?

M500 is defined as the mass enclosed in R500, where the density is 500 times 
the critical density of the Universe:

Using Planck clusters with known masses (e.g. measured from X-ray 
observations), one can calibrate the scaling law between the mass and the 
SZ flux:

➡ Any error on the SZ flux will propagate to the mass estimate, and the 
cosmological constraints

➡ So far, only counts as a function of z have been used

6

M500 =
4⇡

3
500 ⇢c(z)R

3
500

M500 = A⇥ Y ↵
500 ⇥ f(⌦, z)
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How can one get a better estimate of the size and flux without 
using unrealistically costly X-ray follow-up?

➡ solve for Y500 and 𝛳500 using both the degeneracy curve and 
Y500 = f(𝛳500, z) derived from sub-catalogs with already existing 
X-ray observations

7

Y z
500

✓z500

degeneracy curve

scaling law
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Results on simulations

• scatter reduced by 70%;

• if same position is assumed, our estimate and the PSX one are virtually identical;

8
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Results on cosmological sample clusters with X-ray ancillary data

• close to no bias in all cases but the blind estimate; 

• scatter reduced by 40% between the blind estimate and ours.

9
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Results on the PXCC (437 clusters)

• This new method does its job, but not 
more:

• Very tight relation between our 
estimates and the ones obtained 
using the X-ray measurement of the 
size: the size of the clusters is 
well recovered

• When comparing our estimates to 
the ones obtained assuming the X-
ray size and position, it appears that 
the bias is marginally larger (but still 
low) and the scatter is doubled: the 
effects of a different position 
between blind SZ and X-ray 
cannot be canceled by this 
method

10
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Increasing z
• So far, we have considered the redshift                                     

to be perfectly known. This is not realistic. 

➡How will our estimates be affected by errors 
on the redshift?

➡Assuming a goal on the error on the SZ flux, 
what is the highest allowed error on the 
redshift?

• Monte Carlo simulations were realised for 

several goals on σY and various catalogs

• Results summarised in one relation:                                                                                             

and compared to current capabilities (SDSS 
DR6 (Oyaitzu et al. 2008) and redMaPPer 
(Rykoff et al. 2013))

�z = A
⇣�Y

Y

⌘↵Y

z↵z
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• Planck Collaboration (arXiv:1303.5089)

• Masses derived using this method for all 
clusters with a redshift estimate

• This allowed a direct comparison with:

• other SZ surveys, namely ACT and SPT

• existing X-ray catalogs

➡ complementarity of Planck with others

• Work done in close                                 
collaboration with IAS,                               
Nabila Aghanim being                                      
in charge of the SZ                                        
catalog.
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Conclusion

• Reliable mass (and redshift) measurements are indispensable for precise 
cosmology; Planck’s resolution is too low to allow blind precise mass 
measurements

• We developed a new method to estimate cluster SZ flux (from which the 
mass is derived) from blind observations for clusters with known redshifts

• This method was extensively tested on both simulations and Planck data; it 
proved almost as reliable as results obtained using X-ray information

• Uncertainty on redshift measurement doesn’t seem to be a relevant 
limitation

• Results were used and published by the Planck collaboration

➡ The implications in terms of cosmological constraints are to be investigated
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