Chamber construction & commissioning

- \rightarrow mechanical design, front-end ASIC, DAQ, software
- \rightarrow ASIC calibration, Bulk cooking
- \rightarrow Threshold equalisation, ASU X-ray test (Vmesh scan, thr. Scan)
- \rightarrow power-pulsing with 4 chambers & RAMFULL

Performance standalone

- \rightarrow Vmesh scan 1: efficiency, multiplicity, uniformity for 3 thresholds
- \rightarrow Vmesh scan 2: Nhit distribution from pion showers
- \rightarrow thresholds scan (comparison to ASIC calibration)
- \rightarrow rate scan : spark rate with MIPs and pion showers
- \rightarrow angle scan with MIPs and pion showers
- \rightarrow analogue readout: landau (fC) at various mesh voltage, comparison with gain curve

Calorimetry study in SDHCAL

- \rightarrow Choosing medium and high thresholds: software compensation (G4 sim)
- \rightarrow Setting thresholds in MIP units: analogue readout
- \rightarrow Longitudinal profile: shower start (G4 sim), fit (leakage, e/h)
- \rightarrow Response: Nhit for 3 thresholds and reconstructed energy
- \rightarrow Resolution: validate simulation and use it to calculate resolution with 1 and 3 thresholds

PUBLICATION 1 Chamber construction & commissioning

PUBLICATION 2 Chamber performance in beam

PUBLICATION 3 Calorimetry study with Micromegas chambers

1. Overall description of Micromegas chambers

Mechanical design Scalability, dead zone, drift gap, pad size, ASU size Services: gas distribution, gas mixture, voltages, I/O signals

MICROROC

Low noise, 3 global thresholds, dynamic range, pedestal correction, analogue readout, variable shaping time, time-stamping and memory Power pulsing and consumption External/internal trigger

Active Sensor Units Design: layers, Nasic, connectors, T probe Spark protections Bulk mesh: Bulk process, amplification gap, dead zone (pillars and edges), inter-pad

DAQ and software Architecture front & back-end: daisy chain, ASU, interDIF, DIF (USB, HDMI) + DCC, SDCC Chain test with 4 ASU Software: Labview (calibration and testbeam) and Xdaq Framework: detector classes, xml geometry files, event display, rootfiles etc...

2. Test prior chamber assembly

ASIC calibration Purpose and method (setup, scurve, correction on PCB) Noise, shaper gains, noisy channels, pedestal offset

HV training of Bulk mesh Purpose and method Results: Vmax and I(Vmax) for all ASUs

Threshold equalisation Purpose and method Low threshold distribution and uniformity before/after equalisation

ASU X-ray test → Vmesh scan at the lowest threshold Counting plateau and effective detection threshold

 \rightarrow Threshold scan (DAC0 & DAC2) at various mesh voltages Inflexion point versus Vmesh, gain curve slope

 \rightarrow Position scan (6 positions) RMS of Nhit for all ASUs Publication 1: Chamber construction & commissioning

3. Chamber assembly

Steps and photos, hardware tests

4. Cosmic tests (?)

Channel occupancy for 4 chambers at 350 V Cosmic angular distribution Power-pulsing & RAMFULL (?)

4. Functional tests in a beam

Noise condition \rightarrow Channel occupancy, signal to noise ratio, masked channels Uniformity \rightarrow Nhit distribution over 6 ASU Shaper \rightarrow Efficiency @ 370 V versus shaping time 3 thr \rightarrow Radial nhit profiles with showers Ramfull \rightarrow RAMFULL time & beam rate Analogue readout \rightarrow Landau distribution at 350 V Power-pulsing

PUBLICATION 1 Chamber construction & commissioning

PUBLICATION 2 Chamber performance in beam

PUBLICATION 3 Calorimetry study with Micromegas chambers

1. Test beam set-up (RD51 nov 2012 & CALICE oct 2011)

CERN/SPS beam lines Detector stack, iron block, dimension Gas mixture and distribution DAQ, trigger, rates

2. Response to MIPs

Method to measure efficiency and multiplicity Test 1 chamber using 3 others as tracker

Voltage scan (*RD51*) Efficiency & multiplicity for 3 thresholds versus Vmesh

Threshold scan (*RD51*) Efficiency & multiplicity versus DAC0, DAC1 and DAC2 at various Vmesh

Angle scan (*RD51*) Efficiency & multiplicity versus angle

Analogue readout (*RD51*) Landau distribution at various mesh voltages for 4 chambers Compare trend slope with gain curve

Uniformity (*CALICE*) Efficiency and multiplicity in 8x8 cm2 regions inside SDHCAL

Comparison to Monte Carlo (*CALICE*) Nhit at layer 49-50 inside SDHCAL

3. Response to pions

Voltage scan (*RD51*) Nhit distribution at various Vmesh behind iron block for 4 chambers \rightarrow Vmesh & gas gain for 95% of shower hits

Angle scan (*RD51*) Nhit distribution versus angle

Analogue readout (*RD51*) Signal distribution in shower core Compare with MIP Landau

Comparison to Monte Carlo (*CALICE*) Nhit at layer 49-50 inside SDHCAL

4. Sparking study

Rate scan (*RD51*)

Nhit distribution at various rates behind iron block for 4 chambers \rightarrow Mean Nhit VS rate \rightarrow no space charge

Method to identify and count sparks (HV slow control, hit pattern) \rightarrow spark rate versus pion rate

PUBLICATION 1 Chamber construction & commissioning

PUBLICATION 2 Chamber performance in beam

PUBLICATION 3 Calorimetry study with Micromegas chambers

1. Motivations, set-up & statistics, analysis method, Monte Carlo

What is the response of a 50 layers Micromegas SDHCAL? What improvement with a semi-digital readout compared to pure digital?

Experimental set-up & statistics CALICE SDHCAL 46 RPC 4 uM Energy scan: 20-150 GeV with 15-20 k pions / energy

Analysis method Shower start, longitudinal profiles, response

Monte Carlo Geant4 version, physics lists, geometry Publication 3: Calorimetry with Micromegas chambers

2. Software compensation with a semi-digital readout (or: what values for medium and high thresholds?)

Method to use the semi-digital information Determine best values of medium and high thresholds

3. Setting of the thresholds in MIP units

Analogue readout Landau distribution with cuts on DAC0, DAC1 and DAC2 \rightarrow calibration of the 3 thresholds in MIP units (DAC to ADC relation)

4. Longitudinal profiles

Shower start algorithm Optimisation by Monte Carlo

Event selection Time cut, fiducial cuts → Effective interaction length from real data at various energies VS MC

Longitudinal profiles Fit function \rightarrow leakage correction & e/h ratio Comparison to MC for 3 thresholds (0-5-15 MIP)

5. Response to hadrons

Response for 3 thresholds Nhit VS energy (Data/MC)

Response semi-digital Erec VS energy (MC ONLY) Publication 3: Calorimetry with Micromegas chambers

6. Improvement SDHCAL compared to DHCAL